• Title/Summary/Keyword: low cycle fatigue

Search Result 347, Processing Time 0.022 seconds

Solder Joint Reliability of Bottom-leaded Plastic Package (BLP 패키지의 솔더 조인트의 신뢰성 연구)

  • 박주혁
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.79-84
    • /
    • 2002
  • The bottom-leaded plastic(BLP) packages have attracted substantial attention since its appearance in the electronic industry. Since the solder materials have relatively low creep resistance and are susceptible to low cycle fatigue, the life of the solder joints under the thermal loading is a critical issue for the reliability The represent study established a finite element model for the analysis of the solder joint reliability under thermal cyclic loading. An elasto-plastic constitutive relation was adopted for solder materials in the modeling and analysis. A 28-pin BLP assembly is modeled to investigate the effects of various epoxy molding compound, leadframe materials on solder joint reliability. The fatigue life of solder joint is estimated by the modified Coffin-Hanson equation. The two coefficients in the equation are also determined. A new design for lead is also evaluated by using finite element analysis. Parametric studies have been conducted to investigate the dependence of solder joint fatigue life on various package materials.

  • PDF

Fatigue Damage of Quasi-Isotropic Composite Laminates Under Tensile Loading in Different Directions (인장하중방향 변화를 받는 의사등방성 복합재 적층판의 피로손상)

  • 김택현
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.2
    • /
    • pp.80-85
    • /
    • 1999
  • The purpose of this work is to investigate fatigue damage of quasi-isotropic laminates under tensile loading in different directions. Low cycle fatigue tests of [0/-60/+60]a laminates and [+30/-30/90]s lamina tes were carried out. Material systems used are AS4/Epoxy and AS4/PEEK. The fatigue damage of [+30/-30/90]s is very different from that of [0/-60/+60]s. The position of delamination generated at AS4/Epoxy and AS$/PEEK laminates were differentiated by the matrix difference that is, we suppose, the value of both GIcr(critical energy release rate of mode-I) and GIIIcr(critical energy release rate of mode-III) difference.

  • PDF

Fatigue Damage Assessment for Steel Structures Subjected to Earthquake (지진에 대한 강구조물의 피로손상도 추정법)

  • Song, Jong Keol;Yun, Chung Bang;Lee, Dong Guen
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.1 s.30
    • /
    • pp.95-105
    • /
    • 1997
  • Structures subjected to strong seismic excitation may undergo inelastic deformation cycles. The resulting cumulative fatigue damage process reduces the ability of structures and components to withstand seismic loads. Yet, the present earthquake resistance design methods focus mainly on the maximum displacement ductility, ignoring the effect of the cyclic responses. The damage parameters closely related to the cumulative damage need to be properly reflected on the aseismic design methods. In this study, two cumulative damage assessment methods derived from the plastic fatigue theory are investigated. The one is based on the hysteretic ductility amplitude, and the other is based on the dissipated hysteretic energy. Both methods can consider the maximum ductility and the cyclic behavior of structural response. The validity of two damage methods has been examined for single degree of freedom structures with various natural frequencies against two different earthquake excitations.

  • PDF

이중하중을 받는 S45C의 피로거동에 관한 연구

  • 윤두연;이원석;이현우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.268-273
    • /
    • 1992
  • Thin walled tubular specimens of 0.45% structural carbon steel were used in the bizxial tests. Biaxial fatigue tosts were conducted on strain control including fully reversed tension-compression and in phase tension torsion loadings. The predictions of the biaxial fatigue life were based upon the uniaxial low cycle fatigue test results. Fatigue lives were ranged from 10$\^$2/to 10$\^$5/cycles. Four multiaxial strain based theories have been developed to correlate biaxial fatigue experimdntal results. These theories showed good correlatins except for maximum shear strain theory. In uniaxial tests, crack behavior was observed that crack initiated in the maximum shear strain direction and propagated in the direction perpendicular to principal stross. But, in biaxial tests, both crack initiation and growth occured on the maximum shear strain direction only.

Fatigue Damage of Quasi-Isotropic Composite Laminates Under Tensile Loading in Different Directions

  • Kim, In-Kweon;Kong, Chang-Duk;Han, Kyung-Seop
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.483-489
    • /
    • 2000
  • The purpose of this work is to investigate fatigue damage of quasi-isotropic laminates under tensile loading in different directions. Low cycle fatigue tests of $[0/-60/60]_s$ laminates and $[30/-30/90]_s$ laminates were carried out. Material systems used are AS4/Epoxy and AS4/PEEK. The fatigue damage of $[30/-30/90]_s$ is very different from that of $[0/-60/60]_s$. The experimental results are compared with the result obtained from the method for determining strain energy release rate components proposed by the authors. The analytical results were in good agreement with the experimental results. It is proved that the failure criterion based on the strain energy release rate is an appropriate approach to predict the initiation and growth of delaminations under cyclic loading.

  • PDF

The Fatigue Behavior of Mechanically Alloyed Al-4Mg Alloys Dispersed with Oxide Particles (기계적합금화된 분산형 Al-4Mg기 합금의 피로거동)

  • Pyun, J.W.;Cho, J.S.;Kwun, S.I.;Jo, Y.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.4
    • /
    • pp.237-242
    • /
    • 1993
  • The fatigue behaviors of mechanically alloyed Al-4Mg alloys dispersed with either $Al_2O_3$ or $MgAl_2O_4$ oxide particles were investigated. This study maily concerned with the role of coherency of dispersed particles with the matrix on the fatigue behavior of the alloys. The $MgAl_2O_4$ which has a spinel structure with the lattice parameter of exactly the twice of Al showed the habit relation with the matrix. The mechanically alloyed Al-4Mg alloys showed stable stress responses with fatigue cycles from start to failure regadless of strain amplitudes and of existence of dispersoids. The Al-4Mg alloy dispersed with $MgAl_2O_4$ showed not only the better static mechanical properties but also the better low cycle fatigue resistance than that with $Al_2O_3$, i.e., much higher plastic strain energy dissipated to failure, at low strain amplitude. However, this alloy showed inferior fatigue resistance to that dispersed with $Al_2O_3$ or that without dispersion at high strain amplitude. These results imply that $MgAl_2O_4$ may promote lowering the stacking fault energy of the alloy inherited from the coherency with the matrix so that dislocations shuttle back and forth on the same slip plane without cross slipping to other planes during fatigue at low strain amplitude resulting in long fatigue life.

  • PDF

Effects of Nd:YAG Laser Welding Parameters on Fatigue life of Lap Joint Structure in Stainless Steel (스테인리스강의 Nd:YAG 레이저 겹치기 용접부 피로수명에 미치는 용접변수의 영향)

  • Kim, Yang;Yang, Hyun-Seok;Park, Ki-Young;Lee, Kyoung-Don
    • Journal of Welding and Joining
    • /
    • v.26 no.1
    • /
    • pp.69-75
    • /
    • 2008
  • Spot welding which use the main process for side block production of stainless steel railway vehicle is legged behind in laser welding about a quality and productivity. Although the laser welding has many potential advantages such as low heat input and aspect ratio of weld bead, its application to a new structural component still is required many engineering data including mechanical properties such as tensile, fatigue strength, etc on. Therefore, experimental analysis was carried out to understand the fatigue phenomena of different thickness stainless steel overlap joining panels by Nd:YAG laser welding. The fatigue life curves were obtained through fatigue tests with the various levels of applied load. The fatigue life is related with the parameters such as gap size and penetration depth through experiment. As the results, tensile strength and fatigue life were proportional in heat input level and gap was identified the major factor for fatigue life. Also we could know that deferent a-ferrite content at HAZ depend on welding heat input was important factor to determine a formation of initial crack and total fatigue life cycle.

Prediction of Thermal Fatigue Life on $\mu$BGA Solder Joint Using Sn-3.5Ag, Sn-3.5Ag-0.7Cu, and Sn-3.5Ag-3.0In-0.5Bi Solder Alloys (Sn-3.5Ag, Sn-3.5Ag-0.7Cu, Sn-3.5Ag-3.0In-0.5Bi Solder를 이용한 $\mu$BGA Solder접합부의 열피로 수명예측)

  • 김연성;김형일;김종민;신영의
    • Journal of Welding and Joining
    • /
    • v.21 no.3
    • /
    • pp.92-98
    • /
    • 2003
  • This paper describes the numerical prediction of the thermal fatigue life of a $\mu$BGA(Micro Ball Grid Array) solder joint. Finite element analysis(FEA) was employed to simulate thermal cycling loading for solder joint reliability. Strain values, along with the result of mechanical fatigue tests for solder alloys were then used to predict the solder joint fatigue life using the Coffin-Manson equation. The results show that Sn-3.5mass%Ag solder had the longest thermal fatigue life in low cycle fatigue. Also a practical correlation for the prediction of the thermal fatigue life was suggested by using the dimensionless variable ${\gamma}$, which was possible to use several lead free solder alloys for prediction of thermal fatigue life. Furthermore, when the contact angle of the ball and chip has 50 degrees, solder joint has longest fatigue life.

Effect of Cd addition on the Fatigue Properties of Al-Cu-Mn cast alloy (Al-Cu-Mn 주조합금의 피로성질에 미치는 Cd 첨가의 영향)

  • Kim, Gyeong-Hyeon;Lee, Byeong-Hun;Kim, In-Bae
    • Korean Journal of Materials Research
    • /
    • v.11 no.4
    • /
    • pp.300-304
    • /
    • 2001
  • Effect of Cd addition on the fatigue properties of Al-Cu-Mn cast alloy was investigated by low and high cycle fatigue tests. With increasing Cd content, fatigue life and tensile strength were increased. It was found that the fatigue strength was 115MPa and the fatigue ratio was 0.31. Metallographic observation revealed that the fatigue crack initiated at the surface and propagated along the grain boundary. This propagation path was attributed to the presence of PFZ along the grain boundary. The tensile strength increased from 330MPa in the Cd-free Al-Cu- Mn cast alloy to 401MPa in the 0.15%Cd-containing alloy.

  • PDF

Effect of Sn Addition on the Fatigue Properties of Al-Cu-Mn Cast Alloy (Al-Cu-Mu 주조합금의 피로성질에 미치는 Sn 첨가의 영향)

  • Kim, Kyung-Hyun;Kim, Jeung-Dae;Kim, In-Bae
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.248-253
    • /
    • 2002
  • Effect of Sn addition on the fatigue properties of Al-Cu-Mn cast alloy was investigated by low and high cycle fatigue tests. Fatigue life showed the maximum value of 5450cycles in the Al-Cu-Mn alloy containing 0.10%Sn, but decreased rapidly beyond 0.20% of Sn additions. It was found that the fatigue strength was 132MPa and fatigue ratio was 0.31 in the alloy containing 0.10%Sn. Metallographic observation revealed that the fatigue crack initiated at the surface and propagated along the grain boundary. This propagation path was attributed to the presence of PFZ along the grain boundary. The tensile strength increased from 330MPa in 7he Sn-free Al-Cu-Mn cast alloy to 429MPa in the alloy containing 0.10%Sn. But above 0.20%Sn additions, tensile strength was decreased by the segregation of Sn.