• 제목/요약/키워드: low cost torque sensor

검색결과 34건 처리시간 0.032초

Fast Switching Direct Torque Control Using a Single DC-link Current Sensor

  • Wang, Wei;Cheng, Ming;Wang, Zheng;Zhang, Bangfu
    • Journal of Power Electronics
    • /
    • 제12권6호
    • /
    • pp.895-903
    • /
    • 2012
  • This paper presents a fast switching direct torque control (FS-DTC) using only a single DC-link current sensor. In FS-DTC, six new active voltage complex space vectors (CSVs) are synthesized by the conventional active voltage space vectors (SVs). The corresponding sectors are rotated in the anticlockwise direction by 30 degrees. A selection table is defined to select the CSVs. Based on the "Different Phase Mode", the output sequence of the selected CSV is optimized. Accordingly, a reconstruction method is proposed to acquire the phase currents. The core of the FS-DTC is that all of the three phase currents can be reliably reconstructed during every two sampling periods, which is the result of the fast switching between different phases. The errors between the reconstructed and actual currents are strictly limited in one sampling period. The FS-DTC has the advantages of the standard DTC scheme such as simple structure, quick torque response and robustness. As can be seen in the analysis, the FS-DTC can be thought of as an equivalent standard DTC scheme with 86.6% of the maximum speed, 173.2% of the torque ripple, and 115% of the response time of the torque. Based on a dSPACE DS1103 controller, the FS-DTC is implemented in an induction machine drive system. The results verify the effectiveness of the FS-DTC.

저가형 3D프린팅 2축 압력 센서 개발 (Development of Low-cost 3D Printing Bi-axial Pressure Sensor)

  • 최헌수;여준성;성지훈;최현진
    • 로봇학회논문지
    • /
    • 제17권2호
    • /
    • pp.152-158
    • /
    • 2022
  • As various mobile robots and manipulator robots have been commercialized, robots that can be used by individuals in their daily life have begun to appear. With the development of robots that support daily life, the interaction between robots and humans is becoming more important. Manipulator robots that support daily life must perform tasks such as pressing buttons or picking up objects safely. In many cases, this requires expensive multi-axis force/torque sensors to measure the interaction. In this study, we introduce a low-cost two-axis pressure sensor that can be applied to manipulators for education or research. The proposed system used three force sensitive resistor (FSR) sensors and the structure was fabricated by 3D printing. An experimental device using a load cell was constructed to measure the biaxial pressure. The manufactured prototype was able to distinguish the +-x-axis and the +-y-axis pressures.

Improving of Starting and Low Speed Performance of PMAC with Linear Encoder

  • Lee, Dong-Hee;Lee, Hwa-Seok;Park, Sung-Jun;Lee, Yang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.99.4-99
    • /
    • 2001
  • PMAC(Permanent magnet AC) motor drives are widely used in the industrial applications and home appliances because of high torque ratio, high efficiency and precise control performance. In recent years there has been a significant development of PMAC motors of various kinds. Improvements in the properties of permanent magnet materials have increased the viability of related types of motors. However, precise speed and position information is essential for the good control performance. In order to produce correct torque, the rotor flux position information from position sensor has to be identified. In this paper, a low cost position sensor is proposed for improving of starting and low speed performance of PMAC. The proposed position ...

  • PDF

광섬유격자센서와 회전광학커플러를 사용한 새로운 회전축의 토크 측정방법 (Torque Measurement of Rotating Shaft Using Fiber Bragg Grating Sensors and Rotary Optical Coupler)

  • 이종민;황요하
    • 한국소음진동공학회논문집
    • /
    • 제17권12호
    • /
    • pp.1195-1200
    • /
    • 2007
  • Torque of a rotating shaft has been mostly measured by strain gages combined with either a slip ring or telemetry. However, these methods have severe inherent problems like low S/N ratio, high cost, limited number of channels and difficult installation. In this paper, a new method using FBG(fiber bragg grating) sensors and a rotary optical coupler for online non-contact torque monitoring is suggested. FBG sensor can measure both strain and temperature, and has much batter characteristics than those of a strain gage. A rotary optical coupler is a optical connecting device between a rotating shaft and stationary side without any physical contact. It has been devised for transmitting light between a rotating optical fiber and a stationary optical fiber. The proposed method uses this rotary optical coupler to connect FBG sensors on the rotating shaft to instruments at stationary side. And a reference FBG sensor is also applied to compensate the insertion loss change of the rotary optical coupler due to rotation. Three FBG sensors have been fabricated in a single optical fiber. Two FBG sensors are attached on the shaft surface to measure torque and one sensor is installed at the shaft center to compensate the insertion loss change. The torque of a rotating shaft has been successfully measured by the suggested method proving its superior performance potential.

선루프용 BLDC 전동기 홀센서 위치 오차 보상 기법 (Position Error Compensation Method of Hall Sensors for Sunroof System using BLDC Motor)

  • 안정열
    • 전기학회논문지P
    • /
    • 제66권2호
    • /
    • pp.53-57
    • /
    • 2017
  • This papers propose a Hall-effect sensors position error compensation method in a sunroof system using a BLDC motor with a low-cost MCU. If the BLDC motor is controlled with this wrong position, the torque ripple and operating current can be increased and the average torque also decreases. Generally, sunroof system has characteristics that operate at constant load for several seconds. It is possible to find the minimum operating current value while changing the position of the Hall-effect sensor during the sunroof operation by using these characteristics. Therefore, propose a method to change the Hall-effect sensor position and find the minimum current value. The validity of the proposed algorithm is verified through experiments.

철도차량용 선형전동기(LSRM) 위치검출 모델링 (Position Detecting Modeling of Linear Switched Reluctance Motor(LSRM) for Railway Vehicles)

  • 윤용호
    • 전기학회논문지
    • /
    • 제65권11호
    • /
    • pp.1907-1912
    • /
    • 2016
  • In fact, in order to obtain good performances and low torque ripple, a high-resolution sensor is needed, which is costly and usually needs a special construction for the machine. So researchers are becoming aware of their cost and are exploring the possibility of cost reduction. Information of rotor position is necessary to drive Linear Switched Reluctance Motor(LSRM). Therefore, linear optical encoder is used to detect a mover position. Normally, since the price of encoder, which is used for linear motor is relatively higher than the one used for rotory motor and the cost of additional equipment increases with the length of motor. This is not always appropriate, considering economical efficiency in case of using the linear optical encoder. As a results, LSRM has a great part for the total cost. Therefore, in this paper, we propose LSRM position detecting modeling with reflective type photo-sensor. Additionally, we have investigated the possibility of the reduced position sensor for LSRM drives with advanced control technique. To certify the overall characteristics of the proposed method, a simulation using PSIM software has been carried out and the informative results are displayed.

위치/힘 동시제어를 위한 F/T측정 기능을 갖는 6축 순응기구 설계 (Design of a 6-axis Compliance Device with F/T Sensing for Position/Force Control)

  • 김한성
    • 한국산업융합학회 논문집
    • /
    • 제21권2호
    • /
    • pp.63-70
    • /
    • 2018
  • In this paper, the design of a novel 6-axis compliance device with force/torque sensing capability and the experiment results on force measurement are presented. Unlike the traditional control methods using a force/torque sensor with very limited compliance, the force control method employs a compliant device to provide sufficient compliance between an industrial robot and a rigid environment for more stable force control. The proposed compliance device is designed to have a diagonal stiffness matrix at the tip and uses strain gauge measurement which is robust to dust and oil. The measurement circuit is designed with low-cost IC chips however the force resolution is 0.04N.

Practical Pinch Torque Detection Algorithm for Anti-Pinch Window Control System Application

  • Lee, Hye-Jin;Ra, Won-Sang;Yoon, Tae-Sung;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2526-2531
    • /
    • 2005
  • A practical pinch torque estimator based on the Kalman filter is proposed for low-cost anti-pinch window control systems. To obtain the accurate angular velocity from Hall-effect sensor measurements, the angular velocity calculation algorithm is executed with additional procedures for removing the measurement noises. Apart from the previous works using the angular velocity estimates and torque estimates for detecting the pinched condition, the torque rate is augmented to the system model and the proposed pinch estimator is derived by applying the steady-state Kalman filter recursion to the model. The motivation of this approach comes from the idea that the bias errors in torque estimates due to the motor parameter uncertainties can be almost eliminated by introducing the torque rate state. For detecting the pinched condition, a systematic way to determine the threshold level of the torque rate estimates is also suggested via the deterministic estimation error analysis. Simulation results are given to certify the pinch detection performance of the proposed algorithm and its robustness against the motor parameter uncertainties.

  • PDF

주행 시험 데이터를 이용한 저가형 차량시물레이터의 조향감 재현 장치 구현 (Development of A Haptic Steering System for a Low Cost Vehicle Simulator using Proving Ground Test Data)

  • 김성수;정상윤;이창호
    • 한국자동차공학회논문집
    • /
    • 제13권2호
    • /
    • pp.37-43
    • /
    • 2005
  • A haptic steering system which reflects steering reaction torque has been developed for a fixed base vehicle simulator. The haptic steering system consists of a steering effort sensor, MR-clutch, AC servo motor and controller. In order to generate realistic steering torque feel to driver and at the same time to meet real-time simulation requirement, 3D torque map is constructed by experimental data and torque generation algorithm using the torque map has been also developed. 3D torque map is constructed using curve fitting and interpolation of the measured values of the steering angle, velocity and steering torque from actual slalom test on the proving ground. In order to carry out performance test of the developed haptic steering system, a fixed based vehicle simulator is constructed by integrating real time vehicle dynamics module, VR-video/audio module, and the haptic steering system. Steering torque and steering angle curves have been obtained from virtual testing in the vehicle simulator and performance of the haptic steering system has been evaluated.

Coreless Hall Current Sensor for Automotive Inverters Decoupling Cross-coupled Field

  • Kim, Ho-Gi;Kang, Gu-Bae;Nam, Dong-Jin
    • Journal of Power Electronics
    • /
    • 제9권1호
    • /
    • pp.68-73
    • /
    • 2009
  • Automotive inverters may require current sensors for motor torque control, especially, in applications of hybrid electric vehicles or fuel cell vehicles. In this paper, to achieve a compact, integrated and low cost current sensor, a hall current sensor without magnetic core is introduced for integrating an automotive inverter. The compactness of the current sensor is possible by using integrated magnetic concentrators based on the Hall effect. Magnetic fields caused by three-phase currents are analyzed and a magnetic shield design is proposed for decoupling the cross-coupled field. It offers galvanic isolation, wide bandwidth (>100kHz), and accuracy(< 1%). Using 2D FEM analysis, its performance is demonstrated with design parameters at a U-shaped magnetic shield. The proposed coreless current sensor is tested with rated current to validate the linearity and accuracy.