• Title/Summary/Keyword: low chloride deicier(LCD)

Search Result 1, Processing Time 0.016 seconds

Effect of Air Contents, Deicing Salts, and Exposure Conditions on the Freeze-Thaw Durability of the Concrete (콘크리트의 동결융해 내구성에 공기량, 제설제, 노출조건이 미치는 영향에 관한 연구)

  • Lee, Byung-Duk
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.107-113
    • /
    • 2010
  • In this study, the relative effects of low-chloride deicier(LCD) and two other deicing agents on the scaling of concrete were conducted in a series of tests at laboratory accordance with the ASTM C 672. The solutions concentration of deicers tested included 1, 4, 10%. Tap water was used as control. The amount of scaling was evaluated gravimetrically. As test result of deicer solution types, when applied to 4% solutions, surface scaling of concrete after 56 freeze-thaw cycles was produced significantly as about 9 times on LCD solution, as about 18 times on $CaCl_2$ solution, and as about 33 times on NaCl solution comparing with tap water. As test result of deicer solution concentrations, relatively low concentrations (of the 4% by weight) of deicer were produced more surface scaling than higher concentrations (of the 10% by weight) or lower concentrations (of the 1% by weight) of deicer. It show that the damaging concentration is of the order of 3~4% for previous research result. It appears that the mechanism of surface scaling is primarily physical rather than chemical. Also, the effect of chloride deicier types, freeze-thaw cycling, and air contents on the performance of concrete was experimentally investigated. The results show that the concrete specimens subjected to freeze-thaw cycling scaled more severely in exposure to deicing salt than those in non-exposure to deicing salt, weight losses of the specimens tested in exposure to deicing salt were twice as much as those tested in non-exposure to deicing salt. Relative dynamic modulus of elasticity of concrete specimens decreased more quickly in exposure to deicing salt than in non-exposure to deicing salt. Also, relative dynamic modulus of elasticity of concrete specimens in exposure to sodium chloride deicing salt was decreased more quickly comparing with exposure to LCD salt. It is also shown that the chloride contents according to concrete specimen depths was more largely in exposure to LCD salt. When concrete specimen is exposed to chloride deicing salts and freeze-thaw cycling, performance degradation in the entrained air concrete(AE concrete) retarded more considerably comparing with non-entrained air concrete(Non-AE concrete).