• Title/Summary/Keyword: low cement content

Search Result 222, Processing Time 0.023 seconds

The Strength Characteristics of Solidified Sandy Soils with Mixing Conditions (배합조건에 따른 고결사질토의 강도특성)

  • Yu, Chan;Chang, Pyung-Wuck;Lee, Chang-No;Roh, Gwang-Ha
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.02a
    • /
    • pp.84-95
    • /
    • 1999
  • Laboratory experiments were performed to evaluate the strength characteristics of solidified sandy soils by portland cement with mixing conditions. Factors considered in the experiments were the fine content(<#200, %), cement content(%) and water-cement ratio and unconfined compressive strength tests were performed on samples at 7 and 28 cured day. Results of tests showed that for a low cement content(7%∼10%) the fine content was very important while for a high cement content the water-cement ratio was very important. For 7%∼10% cement content, the optimum fine content which gained maximum strength was about 30%. But for 13% cement content, low fine content and water-cement ratio were more useful than others. In the multi regression analysis, significant equation was gained.

  • PDF

A Study on the Cement Mixture With Low Plasticity Silty Soil (저소성 실트질흙의 흙 시멘트에 관한 연구)

  • 김주범;박완순류기송김성교
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.2
    • /
    • pp.3778-3783
    • /
    • 1975
  • The objective of this study is to determine an appropriate cement of soil-cement in which silty soil of salty tidal flat with low plasticity was used. Physical, chemical and mechanical tests were conducted to find out the standard properties of the soil to be used. Various cement contents used in this test were 8%, 10%, 12%, and 14%, and the compressive strength was tested after 7 days and 28 days of standard curing in the above each cement content respectively. The results obtaind are summarized as follows. 1. As the cement content was increased from 8% to 14%, Maximum dry density (M.D.D.) and optimum moisture content (O.M.C.) were not changed remarkably. 2. Density of soil-cement was directly proportional to cement content and inversely proportional to water content. 3. OMC was generally decreased in proportion to the increase of cement content. 4. Compressive stranth was directly proportional to centent and inversely proportional to water content. 5. In freezing and thawing test, maximum loss of 10% in the total Weight was found on the 8% cement mixture. and This loss was rapidly decreased to 2% when the Cement content of the mixture was more than 10%.

  • PDF

Effect of Cement Alkali Content on ASR Expansibility by the Test Method of ASTM C 1260 (ASTM C 1260 실험방법에 의한 시멘트 알칼리 함량이 ASR 팽창성에 미치는 영향)

  • Jeon, Sung Il;Son, Hyeon Jang;Kwon, Soo Ahn;Yun, Kyung Ku
    • International Journal of Highway Engineering
    • /
    • v.14 no.6
    • /
    • pp.37-43
    • /
    • 2012
  • PURPOSES : This study is to evaluate the feasibility of setting the standard of cement alkali content by using ASTM C 1260(accelerated mortar bar test) METHODS : This study analyzes the ASR(alkali silica reaction) expansion of cement mortar bar based on the changes in the aggregate type(fine, coarse), cement type(ordinary, low alkali), and replacement contents of fly ash. ASR tests were conducted according to ASTM C 1260. RESULTS : In this test results, There is no big difference in the ASR expansion between ordinary cement and low alkali cement. From this test results, it was found that the variation of cement alkali content did not have a effect on ASR expansion because mortar bar was placed in a container with sufficient alkali aqueous solution at high temperature during the test process of ASTM C 1260. CONCLUSIONS : It is evidently clear that the alkali content of cement have a effect on ASR. But ASTM C 1260 is difficult to assess this effect.

Properties of Low Heat Portland Cement Concrete by Changing Temperature of Aggregate (골재의 온도 변화에 따른 저발열 포틀랜드 시멘트 콘크리트의 특성)

  • Cho, Yong-Chin;Park, Kwang-Su;Shin, Su-Gyun;Won, Jong-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.4
    • /
    • pp.49-55
    • /
    • 2004
  • Properties of concrete using low heat portland cement is different from using ordinary portland cement and temperature of aggregate can be expected to have an important influence on its properties. In this study, experiment by setting up 5 levels (40, 30, 20, 4, $-2^{\circ}C$) by temperature of aggregate for evaluation properties of concrete using low heat portland cement was conducted. The experiments include slump test, air content test, change of slump, change of air content and compressive strength of concrete test. As the result of experiments, slump and air content was decreased by increasing temperature of aggregate. But it was not exceeding it's limit. Change of slump and air content was rapidly decrease by decreasing temperature of aggregate. At early age, compressive strength was influenced by the temperature of aggregate.

Effects of Soil-cement Stabilization about the Song-I in Cheju Province (제주도"송이"의 시멘트안정처리 효과에 관하여)

  • 신광식;도덕현;이성태
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.23 no.4
    • /
    • pp.53-59
    • /
    • 1981
  • This experiment was carried out to find out the effectiveness of soil cement stabilization about the Song-I in Cheju province. The results are summarized as follows; 1.The increasing ratio of unconfined compressive strength according to the increment of cement content was markedly low compared with the weathered granite soil, so the effect of stabilization was low. 2.The moisture content of the sample of Song-I indicates the maximum unconfined compressive strength showed at the 5% or so of dry side than the optimum moisture content and the change of the unconfined compressive strength according to the change of moisture content was not sensitive compared with the weathered granite soil. 3.Generally the primary strength of curing age within 7 days of the sulfate resisting cement was low compared with the normal portland cement and the strength of 28 curing days showed a similar tendency, especially in case of Song-I, and it seemed that the sulfate resisting cement was a little more effective than the normal portland cement. 4.As the unconfined compressive strength of grain size controlled Song-I was low compared with the weathered granite soil, so the rate of weight loss by the durability test was great, therefore it was thought that the durability was weak.

  • PDF

A Study on the Effects of Bituminous Material on Durability of Soil-Cement Mixtures (염청재료가 흙-시멘트의 강도 및 내구성에 끼치는 영향에 관한 연구)

  • 김종옥;정하우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.20 no.1
    • /
    • pp.4599-4613
    • /
    • 1978
  • This study was intended to investigate the effects of bituminous material content of soil-cement mixtures on their durability. For the purpose, unconfined compressive strength test, Freeze-thaw test, and wet-dry test were performed with three types of soil. Each type of soil was mixed with three levels of cement content and each soil-cement mixture was mixed with four levels of bituminous material content. For the unconfined compressive strength test, Freeze-thaw test and wet-dry test, 324, 108, and 108-specimens were prepared respectively. Unconfined compressive strength was measured at age of 7-days, 14-days and 28-days using 108-specimens in each age. The soil-cement loss rate due to freeze-thaw and wet-dry were calculated after 12 cycles of test using 108-specimens in each test. The results are summarized as follows : 1. Optimum moisture content was increased with increase of cement content, but maximum dry density was changed irregulary with increase of the cement content. 2. The unconfined compressive strength was increased with increase of cement content, bituminous material content and curing age. Cement is more effective factor than bituminous material on unconfined compressive strength of soil-cement Mixture. 3. It is estimated as the most economical cement content that the recommended cement content of A.S.T.M. because increasing rate of unconfined compressive strength at age of 28-days was low when cement content is above the recommanded cement content of A.S.T.M. among all types of soil. 4. Although a portion of cement content is substituted for bituminous material, the necessary unconfined compressive strength can be obtained. 5. The soil-cement loss was more influenced by wet-dry than Freeze-thaw 6. The bituminous material is more effective on the decrease of soil-cement loss than increase of unconfined compressive strength 7. The void ratio of soil-cement mixture was changet irregularly with increase of cement content, but that was decreased in proportion to the increase of bituminous material content. 8. The regression equation between the unconfined compressive strength and soil-cement loss rate were obtained as table 7.

  • PDF

Durability Characteristics of Low Strength Fly ash-Cement Composites (저강도 플라이애시-시멘트 복합체의 내구특성)

  • 원종필;신유길;이용수;안태송
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.142-147
    • /
    • 2000
  • Durability characteristics of controlled low strength material(flowable fill) with high volume fly ash content was examined. The mix proportions used for flowable fill are selected to obtain low-strength material in the 10 to 15kgf/㎥ range. The optimized flowable fill was consisted of 60kgf/㎥ cement content, 280kgf/㎥ fly ash content, 1400kgf/㎥sand content, and 320kgf/㎥water content. Subsequently, durability tests including permeability warm water immersion, repeated wetting & drying, freezing & thawing for high volume fly ash-flowable fill are conducted The test results indicated that flowable fill has has acceptable durability characteristics.

  • PDF

The Application of Super-flowing Concrete Using Low Heat Cement (저발연 시멘트를 사용한 초유동 콘크리트의 물성)

  • 노재호;한정호;송용순;최이현;천재원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.649-656
    • /
    • 1997
  • The properties of super-flowing concrete with low heat cement were experimentally investigated and compared with ordinary 25-240-15 concrete with type Vcement. The cement content of super-flowing concrete with the low heat cement was 400 kg/$\textrm{m}^3$. However the hydration heat of super-flowing concrete is relatively lower than that ordinary concrete with type V cement. Also the ability to resist chloride ion penetration of super-flowing concrete with low heat cement is 5 times better than that of the ordinary concrete.

  • PDF

Influence of Mixing Conditions on the Strength of Solidified Sandy Soils with Cement (배합조건이 시멘트혼합 사질토의 강도에 미치는 영향)

  • Yoo, Chan;Chang, Pyung-Wuck
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.6
    • /
    • pp.135-142
    • /
    • 2001
  • Laboratory experiment was performed to evaluate the influence of mixing conditions to the strength of solidified sandy soils with cement. The major physical factors considered in this experiment were the fine particles content(<$\sharp200%$), cement content(%) and water-cement ratio, and unconfined compressive strength test was performed on the samples at 7 and 28 cured day. The results of tests shows that when the cement content is relatively low (7~10 percents) the fine content in the sandy soils is very important, but when cement content is high the water-cement ratio became more important. It was appeared that in the range of the cement content of 7~10 percents, about 20~30 percents of fine content to the total sample weight is the optimum condition to get the maximum strength. In the case of the cement content of 13 percents, the strength of sample was considerably affected by the water-cement ratio rather than the fine content. In this paper, empirical equations were also developed and evaluated to verify the relationship among three factors by the multi-regression analysis.

  • PDF

Experimental study of strength of cement solidified peat at ultrahigh moisture content

  • Wang, Rong
    • Geomechanics and Engineering
    • /
    • v.29 no.1
    • /
    • pp.13-23
    • /
    • 2022
  • Peat soil has the characteristics of high moisture content, large void ratio and low shear strength. In this study, unconfined compressive strength and SEM tests are conducted to investigate the effects of ultrahigh moisture content, cement content, organic content and pH value on the strength of solidified peat. As an increase in the cement content and curing period, the failure mode of solidified peat soil changes from ductile failure to brittle failure. The influence of moisture content on the strength of solidified peat is greater than the cement content. As cement content increases from 10% to 30%, strength of solidified peat at a curing age of 28 days increases by 161%~485%. By increasing water content by 100%, decreases of solidified peat at a curing age of 28 days is 42%~79%. Compared with the strength of solidified peat with a pH value of 5.5, the strength of peat with a pH value of 3.5 reduces by 10% ~ 46%, while the strength of peat with a pH value of 7.0 increases by 8% ~ 38%. It is recommended to use filler materials for stabilizing peat soil with moisture content greater than 200%. Because of small size of clay particles, clay added in the cement solidified peat can improve much higher strength that that of sand.