• 제목/요약/키워드: low aspect ratio

검색결과 407건 처리시간 0.029초

Homoopitaxial Growth on Ni(110) Surface

  • Kahng, S.J.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2000년도 제18회 학술발표회 논문개요집
    • /
    • pp.138-138
    • /
    • 2000
  • Kinetic behaviors of homoepitaxial growth on Ni(110) surface was studied at the growth-temperature ranges 290~380 K with scanning tunneling microscopy. At low temperature (~290 K), deposited Ni grows layer-by-layer mode in the first several layers with one-dimensional islands but eventually (at > monolayers) forms three-dimensional islands througy the kinetic shortening of the average length of one-dimensional islands. At the intermediat temperature (~340 K), the three-dimensional islands were observed to be I) regular mesa-like structure with high aspect ratio (~1:10) at ~15 monolayer, ii) hut-like structure with low aspect ratio (~1:1.5) at ~35 monolayer, and iii) rounded mound structure at ~55 monolayers, due to the competition of kinetic and energetic terms. At the high temperature (~ 380 K), the flat surface with layer-by-layer mode was observed up to 50 monolayers. Microscopic orgins for the observations will be discussed on the basis of kinetic Monte Carlo simulations.

  • PDF

비선형 와류격자법을 이용한 작은 종횡비 날개의 고받음각 및 지면효과 후류 특성 분석 (Wake Characteristics of High Angle of Attack and Ground Effect for Low Aspect Ratio Wings using NLVLM)

  • 이세욱
    • 융복합기술연구소 논문집
    • /
    • 제4권1호
    • /
    • pp.37-41
    • /
    • 2014
  • For the analysis of lifting surface at high angle of attack, a Nonlinear Vortex Lattice Method(NLVLM) was used. The NLVLM is intented to compute the interactions between lifting surfaces and separated vertical flow. The lifting surfaces are represented by a lattice of discrete vortex rings. And wakes are represented by families of non-lintersecting, semi-infinite vortex line segments. The image method also used to analyze the ground effect. It is found that vortex lines separated from lifting surfaces represent the separated flows successfully. Although the present method is applied for the rectangular wing and delta wing, extensions can be possible for the arbitrary lifting surfaces. The Present results show good agreement with experimental data.

경사진 직사각형 공간내에서 내부적으로 가열되는 유체의 자연대류유동 및 열전달 (Natural Convection Flow and Heat Transfer in a Fluid Heated Internally within an Inclined Rectangular Enclosure)

  • 이재헌;김재근;박만흥
    • 대한기계학회논문집
    • /
    • 제16권3호
    • /
    • pp.555-568
    • /
    • 1992
  • 본 연구에서는 상기 연구의 연장으로서 내부 Rayleigh수가 1*$10^{4}$~1.5 *$10^{5}$ 범위 일때 Prandtl수가 6.05인 내부발열유체에 의해 자연대류가 일어나는 밀폐공간에서 종회비가 1/2, 1/3, 및 1/4로 변화할 때 유동, 온도분포 및 열전달특성 을 수치적인 방법 및 실험적인 방법으로 연구하였다.

Wind loading of a finite prism: aspect ratio, incidence and boundary layer thickness effects

  • Heng, Herman;Sumner, David
    • Wind and Structures
    • /
    • 제31권3호
    • /
    • pp.255-267
    • /
    • 2020
  • A systematic set of low-speed wind tunnel experiments was performed at Re = 6.5×104 and 1.1×105 to study the mean wind loading experienced by surface-mounted finite-height square prisms for different aspect ratios, incidence angles, and boundary layer thicknesses. The aspect ratio of the prism was varied from AR = 1 to 11 in small increments and the incidence angle was changed from α = 0° to 45° in increments of 1°. Two different boundary layer thicknesses were used: a thin boundary layer with δ/D = 0.8 and a thick boundary layer with δ/D = 2.0-2.2. The mean drag and lift coefficients were strong functions of AR, α, and δ/D, while the Strouhal number was mostly influenced by α. The critical incidence angle, at which the prism experiences minimum drag, maximum lift, and highest vortex shedding frequency, increased with AR, converged to a value of αc = 18° ± 2° once AR was sufficiently high, and was relatively insensitive to changes in δ/D. A local maximum value of mean drag coefficient was identified for higher-AR prisms at low α. The overall behaviour of the force coefficients and Strouhal number with AR suggests the possibility of three flow regimes.

3차원 고세장비 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구 (NUMERICAL ANALYSIS FOR TURBULENT FLOW AND AERO-ACOUSTICS AROUND A THREE DIMENSIONAL CAVITY WITH HIGH ASPECT RATIO)

  • 문바울;김재수
    • 한국전산유체공학회지
    • /
    • 제15권2호
    • /
    • pp.7-13
    • /
    • 2010
  • Flight vehicles such as wheel wells and bomb bays have many cavities. The flow around a cavity is characterized as an unsteady flow because of the formation and dissipation of vortices brought by the interaction between the free stream shear layer and the internal flow of the cavity. The resonance phenomena can damage the structures around the cavity and negatively affect the aerodynamic performance and stability of the vehicle. In this study, a numerical analysis was performed for the cavity flows using the unsteady compressible three-dimensional Reynolds-Averaged Navier-Stokes (RANS) equation with Wilcox's turbulence model. The Message Passing Interface (MPI) parallelized code was used for the calculations by PC-cluster. The cavity has aspect ratios (L/D) of 5.5 ~ 7.5 with width ratios (W/D) of 2 ~ 4. The Mach and Reynolds numbers are 0.4 ~ 0.6 and $1.6{\times}10^6$, respectively. The occurrence of oscillation is observed in the "shear layer and transient mode" with a feedback mechanism. Based on the Sound Pressure Level (SPL) analysis of the pressure variation at the cavity trailing edge, the dominant frequencies are analyzed and compared with the results of Rossiter's formula. The dominant frequencies are very similar to the result of Rossiter's formula and other experimental datum in the low aspect ratio cavity (L/D = ~4.5). In the high aspect ratio cavity, however, there are other low dominant frequencies of the leading edge shear layer with the dominant frequencies of the feedback mechanism.

Hydrothermally deposited Hydrogen doped Zinc Oxide nano-flowers structures for amorphous silicon thin film solar cells

  • Kim, Yongjun;Kang, Junyoung;Jeon, Minhan;Kang, Jiyoon;Hussain, Shahzada Qamar;Khan, Shahbaz;Kim, Sunbo;Yi, Junsin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.236.1-236.1
    • /
    • 2015
  • The surface morphology of front transparent conductive oxide (TCO) films is very important to achieve high current density in amorphous silicon (a-Si) thin film solar cells since it can scatter the light in a better way. In this study, we present the low cost hydrothermal deposited uniform zinc oxide (ZnO) nano-flower structure with various aspect ratios for a-Si thin film solar cells. The ZnO nano-flower structures with various aspect ratios were grown on the RF magnetron sputtered AZO films. The diameters and length of the ZnO nano-flowers was controlled by varying the annealing time. The length of ZnO nano-flowers were varied from 400 nm to $2{\mu}m$ while diameter was kept higher than 200 nm to obtain different aspect ratios. The ZnO nano-flowers with higher surface area as compared to conventional ZnO nano structure are preferred for the better light scattering. The conductivity and crystallinity of ZnO nano-flowers can be enhanced by annealing in hydrogen atmosphere at 350 oC. The vertical aligned ZnO nano-flowers showed higher haze ratio as compared to the commercially available FTO films. We also observed that the scattering in the longer wavelength region was favored for the high aspect ratio of ZnO nano-flowers. Therefore, we proposed low cost and vertically aligned ZnO nano-flowers for the high performance of thin film solar cells.

  • PDF

이동지면 효과를 고려한 위그선용 저 종횡비 날개의 양력특성에 대한 실험연구 (Experimental Study on Lift Characteristics Considering Moving Ground Effects of Low Aspect Ratio Wings for Wing-In Ground Effect Crafts)

  • 안병권;구성필;류재문;노인식
    • 대한조선학회논문집
    • /
    • 제48권5호
    • /
    • pp.381-389
    • /
    • 2011
  • In this study, we are focusing our attention on lift characteristics of the low aspect wings for Wing-In Ground effect crafts (WIG). Experimental measurements at an open-type wind tunnel are carried out and results are comparatively presented. In order to simulate the realistic ground condition in where the WIG craft is flying, moving ground is implemented by a conveyor belt rotating with the same velocity of the inflow. We consider two different wings (NACA0012 and DHMTU section) which have four different aspect ratios (0.5, 1.0, 1.5 and 2.0). Forces acting on the wings are measured and lift characteristics are elaborately investigated for various different conditions. In addition, end-plate effects are estimated. Results are validated by comparing with theoretic solutions of the symmetric airfoil. Present results show that ground effects are differently generated in moving or fixed ground conditions, and hence left characteristics are affected by the ground condition. Consequently, accurate aerodynamic forces acting on the WIG craft are guaranteed in a realistic moving ground condition.

종횡비가 다른 납작관 내 응축열전달 및 압력손실 (Condensation Heat Transfer and Pressure Drop in Flat Tubes with Different Aspect Ratios)

  • 김내현;박지훈;차상진
    • 대한기계학회논문집B
    • /
    • 제34권12호
    • /
    • pp.1111-1119
    • /
    • 2010
  • 본 연구에서는 내경 5.0mm 원관을 납작하게 한 납작관에 대하여 R-410A 를 사용하여 응축열전달 실험을 수행하였다. 실험은 포화온도와 열유속을 각각 $45^{\circ}C$ 와 10kW/$m^2$으로 고정한 상태에서 질량유속과 건도를 변화시키며 수행되었다. 실험결과 납작관의 종횡비가 열전달계수에 미치는 영향은 유동양식에 따라 달리 나타났다. 환상류에서는 종횡비가 증가할수록 증가하고 성층류에서는 종횡비가 증가할수록 감소하였다. 한편 납작관의 마찰손실은 종횡비가 증가할수록 증가하였다. 기존 상관식들은 납작관의 열전달계수와 마찰계수를 적절히 예측하였다.

비선형 와류격자법을 이용한 낮은 종횡비 날개의 공력특성 계산 (Calculation of Low Aspect Ratio Wing Aerodynamics by Using Nonlinear Vortex Lattice Method)

  • 이태승;박승오
    • 한국항공우주학회지
    • /
    • 제36권11호
    • /
    • pp.1039-1048
    • /
    • 2008
  • 본 논문에서는 새로운 비선형 와류격자법 계산 과정이 제안된다. 기존의 계산 과정은 자유와의 형태 계산을 위해 내부 반복계산 및 하향이완법을 포함한다. 하지만 본 논문에서는 유사 정상 개념에 기초한 새로운 수식을 제안하여 자유와의 형태를 계산함으로써, 계산 과정에서 내부 반복계산 및 하향이완법을 생략한다. 또한 반복계산이 진행됨에 따라 각 분절에 유도되는 유속도를 적절히 평균해 줌으로써 알고리듬의 수치적 안정성을 향상시킨다. 그리고 낮은 종횡비 날개에 대한 수치실험을 수행하여 분절의 길이, 와류중심반경, 후류영역 계산범위 등과 같은 중요 인자들의 적절한 기준을 경험적으로 결정한다.