• 제목/요약/키워드: loss of coolant accident

Search Result 201, Processing Time 0.023 seconds

Evaluation of Ultimate Pressure Capacity of Wolsong Containment Structure (월성 원자력발전소 격납건물의 극한내압평가)

  • Kwak Hyo-Gyoung;Kim Jae Hong;Kim Sun-Hoon;Chung Yun-Suk
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.183-189
    • /
    • 2005
  • Nuclear containment structure is the last barrier for being secure from any nuclear power plant accident. Even though the safety requirements of nuclear power plant have been focused on removing accidental situations, nuclear containment structure must reserve the sufficient resisting capacity to any accident because it works as the last barrier. The acceptable nuclear containment structure makes possible to limit the effect of internal accidents and to avoid radioactive release. In this study, to conduct the numerical analysis for the structural safety of a containment structure, loss of coolant accident (LOCA) is considered as the basic accidental load, and Wolsong containment structure is considered as a target structure. The CANDU containment structure, such as Wolsong containment structure, is a prestressed concrete shell structure which has dome and is reinforced with bonded tendons. The evaluation of ultimate pressure capacity was conducted by nonlinear analysis of a prestressed concrete containment structure.

  • PDF

1-D Two-phase Flow Investigation for External Reactor Vessel Cooling (원자로 용기 외벽냉각을 위한 1차원 이상유동 실험 및 해석)

  • Kim, Jae-Cheol;Park, Rae-Joon;Cho, Young-Rho;Kim, Sang-Baik;Kim, Sin;Ha, Kwang-Soon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.5
    • /
    • pp.482-490
    • /
    • 2007
  • When a molten corium is relocated in a lower head of a reactor vessel, the ERVC (External Reactor Vessel Cooling) system is actuated as coolant is supplied into a reactor cavity to remove a decay heat from the molten corium during a severe accident. To achieve this severe accident mitigation strategy, the two-phase natural circulation flow in the annular gap between the external reactor vessel and the insulation should be formed sufficiently by designing the coolant inlet/outlet area and gap size adequately on the insulation device. For this reason, one-dimensional natural circulation flow tests and the simple analysis were conducted to estimate the natural circulation flow under the ERVC condition of APR1400. The experimental facility is one-dimensional and scaled down as the half height and 1/238 channel area of the APR1400 reactor vessel. The calculated circulation flow rate was similar to experimental ones within about ${\pm}$15% error bounds and depended on the form loss due to the inlet/outlet area.

SIMMER-IV application to safety assessment of severe accident in a small SFR

  • H. Tagami;Y. Tobita
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.873-879
    • /
    • 2024
  • A sodium-cooled fast reactor (SFR) core has a potential of prompt criticality due to a change of core material distribution during a severe accident, and the resultant energy release has been one of the safety issues of SFRs. In this study, the safety assessment of an unprotected loss-of-flow (ULOF) in a small SFR (SSFR) has been performed using the SIMMER-IV computer code, which couples the models of space- and time-dependent neutronics and multi-component, multi-field thermal hydraulics in three dimensions. The code, therefore, is applicable to the simulations of transient behaviors of extended disrupted core material motion and its reactivity effects during the transition phase (TP) of ULOF, including a potential of prompt-criticality power excursions driven by fuel compaction. Several conservative assumptions are used in the TP analysis by SIMMER-IV. It was found out that one of the important mechanisms that drives the reactivity-inserting fuel motion was sodium vapor pressure resulted from a fuel-coolant interaction (FCI), which itself was non-energetic local phenomenon. The uncertainties relating to FCI is also evaluated in much conservative way in the sensitivity analysis. From this study, the ULOF characteristics in an SSFR have been understood. Occurrence of recriticality events under conservative assumptions are plausible, but their energy releases are limited.

Internal Event Level 1 Probabilistic Safety Assessment for Korea Research Reactor (국내 연구용원자로 전출력 내부사건 1단계 확률론적안전성평가)

  • Lee, Yoon-Hwan;Jang, Seung-Cheol
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.3
    • /
    • pp.66-73
    • /
    • 2021
  • This report documents the results of an at-power internal events Level 1 Probabilistic Safety Assessment (PSA) for a Korea research reactor (KRR). The aim of the study is to determine the accident sequences, construct an internal level 1 PSA model, and estimate the core damage frequency (CDF). The accident quantification is performed using the AIMS-PSA software version 1.2c along with a fault tree reliability evaluation expert (FTREX) quantification engine. The KRR PSA model is quantified using a cut-off value of 1.0E-15/yr to eliminate the non-effective minimal cut sets (MCSs). The final result indicates a point estimate of 4.55E-06/yr for the overall CDF attributable to internal initiating events in the core damage state for the KRR. Loss of Electric Power (LOEP) is the predominant contributor to the total CDF via a single initiating event (3.68E-6/yr), providing 80.9% of the CDF. The second largest contributor is the beam tube loss of coolant accident (LOCA), which accounts for 9.9% (4.49E-07/yr) of the CDF.

Thermal Hydraulic Design Parameters Study for Severe Accidents Using Neural Networks

  • Roh, Chang-Hyun;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.469-474
    • /
    • 1997
  • To provide tile information ell severe accident progression is very important for advanced or new type of nuclear power plant (NPP) design. A parametric study, therefore was performed to investigate the effect of thermal hydraulic design parameters ell severe accident progression of pressurized water reactors (PWRs), Nine parameters, which are considered important in NPP design or severe accident progression, were selected among the various thermal hydraulic design parameters. The backpropagation neural network (BPN) was used to determine parameters, which might more strongly affect the severe accident progression, among mile parameters. For training. different input patterns were generated by the latin hypercube sampling (LHS) technique and then different target patterns that contain core uncovery time and vessel failure time were obtained for Young Gwang Nuclear (YGN) Units 3&4 using modular accident analysis program (MAAP) 3.0B code. Three different severe accident scenarios, such as two loss of coolant accidents (LOCAs) and station blackout(SBO), were considered in this analysis. Results indicated that design parameters related to refueling water storage tank (RWST), accumulator and steam generator (S/G) have more dominant effects on the progression of severe accidents investigated, compared to tile other six parameters.

  • PDF

Evaluation of the Mist Diffusion Layer Condensation Heat Transfer Model with a Non-condensable Gas Present (불응축성 기체 환경에서의 연무/확산 경계층 응축열전달 모델 평가)

  • 변층섭;이재용;이창섭
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2003.05a
    • /
    • pp.371-376
    • /
    • 2003
  • 원자력 발전소에서 격납건물 계통의 건전성 유지는 냉각재상실사고(Loss of Coolant Accident: LOCA) 및 주증기관 파단(Main Steam Line Break : MSLB) 사고와 같은 설계기준사고 시 격납건물의 최대 온도/압력을 평가하는 격납건물 성능 평가는 격납용기 내에 방사능 물질을 효율적으로 가두어 방사능 피해로부터 공공의 안전을 확보할 수 있느냐 하는 관건이다.(중략)

  • PDF

A numerical study on the optimum size for the orifice located on the steam generator cassette of integral reactor (일체형원자로 증기발생기 카세트 하단에 설치된 오리피스의 최적설계 연구)

  • Kang Hyung Seok;Yoon Juhyeon;Kim Hwan Yeol;Cho Bong Hyun;Lee Doo Jeong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.75-81
    • /
    • 1998
  • A new advanced integral reactor of 330 MWt capacity named SMART(System-integrated Modular Advanced ReacTor) is currently under development at KAERI(Korea Atomic Energy Research Institute). One of the major design features of the integral reactor is locating the steam generators(SG) inside reactor vessel and eliminating the possibility of LB LOCA(large Break Loss of Coolant Accident). Orifices are fitted at the low part of steam generator cassette to stabilize and balance coolant flow distribution in the MCP (Main Circulation Pump) pressure header. A sensitivity analysis is conducted to determine the optimum orifice size using computer code 'CFX'.

  • PDF

Performance analysis of automatic depressurization system in advanced PWR during a typical SBLOCA transient using MIDAC

  • Sun, Hongping;Zhang, Yapei;Tian, Wenxi;Qiu, Suizheng;Su, Guanghui
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.937-946
    • /
    • 2020
  • The aim in the present work is to simulate accident scenarios of AP1000 during the small-break loss-of-coolant accident (SBLOCA) and investigate the performance and behavior of automatic depressurization system (ADS) during accidents by using MIDAC (The Module In-vessel Degradation severe accident Analysis Code). Four types of accidents with different hypothetical conditions were analyzed in this study. The impact on the thermal-hydraulic of the reactor coolant system (RCS), the passive core cooling system and core degradation was researched by comparing these types. The results show that the RCS depressurization becomes faster, the core makeup tanks (CMT) and accumulators (ACC) are activated earlier and the effect of gravity water injection is more obvious along with more ADS valves open. The open of the only ADS1-3 can't stop the core degradation on the basis of the first type of the accident. The open of ADS1-3 has a great impact on the injection time of ACC and CMT. The core can remain intact for a long time and the core degradation can be prevent by the open of ADS-4. The all results are significant and meaningful to understand the performance and behavior of the ADS during the typical SBLOCA.

The influence of the water ingression and melt eruption model on the MELCOR code prediction of molten corium-concrete interaction in the APR-1400 reactor cavity

  • Amidu, Muritala A.;Addad, Yacine
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1508-1515
    • /
    • 2022
  • In the present study, the cavity module of the MELCOR code is used for the simulation of molten corium concrete interaction (MCCI) during the late phase of postulated large break loss of coolant (LB-LOCA) accident in the APR1400 reactor design. Using the molten corium composition data from previous MELCOR Simulation of APR1400 under LB-LOCA accident, the ex-vessel phases of the accident sequences with long-term MCCI are recalculated with stand-alone cavity package of the MELCOR code to investigate the impact of water ingression and melt eruption models which were hitherto absent in MELCOR code. Significant changes in the MCCI behaviors in terms of the heat transfer rates, amount of gases released, and maximum cavity ablation depths are observed and reported in this study. Most especially, the incorporation of these models in the new release of MELCOR code has led to the reduction of the maximum ablation depth in radial and axial directions by ~38% and ~32%, respectively. These impacts are substantial enough to change the conclusions earlier reached by researchers who had used the older versions of the MELCOR code for their studies. and it could also impact the estimated cost of the severe accident mitigation system in the APR1400 reactor.

PREDICTION OF THE REACTOR VESSEL WATER LEVEL USING FUZZY NEURAL NETWORKS IN SEVERE ACCIDENT CIRCUMSTANCES OF NPPS

  • Park, Soon Ho;Kim, Dae Seop;Kim, Jae Hwan;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.373-380
    • /
    • 2014
  • Safety-related parameters are very important for confirming the status of a nuclear power plant. In particular, the reactor vessel water level has a direct impact on the safety fortress by confirming reactor core cooling. In this study, the reactor vessel water level under the condition of a severe accident, where the water level could not be measured, was predicted using a fuzzy neural network (FNN). The prediction model was developed using training data, and validated using independent test data. The data was generated from simulations of the optimized power reactor 1000 (OPR1000) using MAAP4 code. The informative data for training the FNN model was selected using the subtractive clustering method. The prediction performance of the reactor vessel water level was quite satisfactory, but a few large errors were occasionally observed. To check the effect of instrument errors, the prediction model was verified using data containing artificially added errors. The developed FNN model was sufficiently accurate to be used to predict the reactor vessel water level in severe accident situations where the integrity of the reactor vessel water level sensor is compromised. Furthermore, if the developed FNN model can be optimized using a variety of data, it should be possible to predict the reactor vessel water level precisely.