• Title/Summary/Keyword: loss curves

Search Result 270, Processing Time 0.028 seconds

Iron Loss Coefficient Calculation of the Silicon Steel for High Speed Motor (고속용 전동기에 사용되는 실리콘 규소 강판의 철손 계수 산정)

  • Jang, Seok-Myeong;Cho, Seong-Kook;Cho, Han-Wook;Yang, Hyun-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.128-130
    • /
    • 2003
  • For electrical machine designers, core loss data are usually provided in the form of tables or curves of total loss versus flux density or frequency. The aim of this work is to propose a mathematical model for the iron losses prediction in soft magnetic material$ with any frequency and flux density. In this paper, three formulas for calculating the iron loss coefficients are discussed. And the coefficients are applied to calculate the iron loss of the 25kW high speed motor.

  • PDF

Performance analysis of mixed-flow fans considering the low flow characteristics (저유량 특성을 고려한 사류 송풍기의 성능 해석)

  • Oh, Hyoung Woo;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.110-115
    • /
    • 2000
  • The mean streamline analysis using the empirical loss correlations has been developed for performance prediction of industrial mixed-flow fan impellers in the present study. New simple, but effective, models for the additional Euler input work characteristic and an internal recirculation loss due to internal flow reversal under the low flowrate conditions are proposed in this paper. Comparison of overall performance predictions with six sets of test data of mixed-flow fans is accomplished to demonstrate the accuracy of the proposed models. Predicted performance curves by the present set of loss models agree fairly well with experimental data for a variety of mixed-flow fan impellers over the entire operating conditions. The prediction method presented herein can be used efficiently in the conceptual design phase of mixed-flow fan impellers.

  • PDF

3-D Core Loss Calculation in BLDC Motor having Overhang made of SMC Material. (오버행을 가지는 SMC재질을 이용한 BLDC전동기의 3차원 철손 해석)

  • Lee Sang-Ho;Lee Ji-Young;Nam Hyuk;Hong Jung-Pyo;Hur Jin;Sung Ha-Kyung
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1043-1045
    • /
    • 2004
  • This paper deals with the core loss calculation of a BLDC motor made of Soft Magnetic Composite material. Since the teeth of motor partially have overhang in axial direction, 3 - dimensional equivalent magnetic circuit network (3D-EMCN) is used as an analytical method to get flux density of each element. The total core loss is calculated with the magnetic flux density and core loss curves of the SMC material. The calculated result is compared with core loss of the motor without overhang in stator teeth.

  • PDF

Iron Loss Analysis of Transverse Flux Linear Motor using Solid type Yoke (Solid type 요크를 사용하는 횡자속 전동기의 철손해석)

  • Lee Ji-Young;Hong Jung-Pyo;Chang Jung-Hwan;Kang Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1055-1057
    • /
    • 2004
  • This paper deals with a qualitative analysis of iron loss in Transverse Flux Linear Motor (TFLM). 3D equivalent magnetic circuit network method (EMCNM) is used as an analytical method to get flux density of each element. The total core loss is calculated with the magnetic flux density and core loss curves of an optional material. The results of iron loss analysis can be used as a criterion to decide the manufactural shape such as lamination or solid type core, skew position, etc.

  • PDF

Seismic fragility curves of single storey RC precast structures by comparing different Italian codes

  • Beilic, Dumitru;Casotto, Chiara;Nascimbene, Roberto;Cicola, Daniele;Rodrigues, Daniela
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.359-374
    • /
    • 2017
  • The seismic events in Northern Italy, May 2012, have revealed the seismic vulnerability of typical Italian precast industrial buildings. The aim of this paper is to present a seismic fragility model for Italian RC precast buildings, to be used in earthquake loss estimation and seismic risk assessment by comparing two building typologies and three different codes: D.M. 3-03-1975, D.M. 16-01-1996 and current Italian building code that has been released in 2008. Based on geometric characteristics and design procedure applied, ten different building classes were identified. A Monte Carlo simulation was performed for each building class in order to generate the building stock used for the development of fragility curves trough analytical method. The probabilistic distributions of geometry were mainly obtained from data collected from 650 field surveys, while the material properties were deduced from the code in place at the time of construction or from expert opinion. The structures were modelled in 2D frameworks; since the past seismic events have identified the beam-column connection as the weakest element of precast buildings, two different modelling solutions were adopted to develop fragility curves: a simple model with post processing required to detect connection collapse and an innovative modelling solution able to reproduce the real behaviour of the connection during the analysis. Fragility curves were derived using both nonlinear static and dynamic analysis.

A Study on The Wear Process and Wear Mechanism of the Alumina Ceramics with Different Alumina Purity (순도를 달리한 알루미나 세라믹스의 마멸과정 및 이의 기구에 관한 연구)

  • 전태옥;진동규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3404-3412
    • /
    • 1994
  • The present study was undertaken to investigate the dry wear process and wear mechanism of the alumina ceramics in the purity variation which are used for the mechanical seal, roll, liner and dies. The wear test was carried out under different experimental condition using the wear testing device and in which the annular surface rubbed on dry sliding condition various sliding speed, contact pressure and sliding distance. In case of alumina purity 95%, there was speed range which wear loss increased rapidly owing to enlargement of heat impact force and temperature rise of wear surface. According as the alumina purity increased, wear loss decreased but alumina purity 85% with much void and defect had the most wear loss than any other alumina purity. The friction coefficient of sliding initial stage of wear curves has a large value but according to increase of sliding distance, it decreased owing to drop of the shear strength of wear surfaces.

Fragility curves and loss functions for RC structural components with smooth rebars

  • Cardone, Donatello
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1181-1212
    • /
    • 2016
  • Fragility and loss functions are developed to predict damage and economic losses due to earthquake loading in Reinforced Concrete (RC) structural components with smooth rebars. The attention is focused on external/internal beam-column joints and ductile/brittle weak columns, designed for gravity loads only, using low-strength concrete and plain steel reinforcing bars. First, a number of damage states are proposed and linked deterministically with commonly employed methods of repair and related activities. Results from previous experimental studies are used to develop empirical relationships between damage states and engineering demand parameters, such as interstory and column drift ratios. Probability distributions are fit to the empirical data and the associated statistical parameters are evaluated using statistical methods. Repair costs for damaged RC components are then estimated based on detailed quantity survey of a number of pre-70 RC buildings, using Italian costing manuals. Finally, loss functions are derived to predict the level of monetary losses to individual RC components as a function of the experienced response demand.

Applications of Seismic Disaster Simulation Technology on Risk Management

  • Yeh, Chin-Hsun
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.16-24
    • /
    • 2010
  • This paper introduces the applications of Taiwan Earthquake Loss Estimation System (TELES), which is developed by the National Center for Research on Earthquake Engineering (NCREE). Seismic disaster simulation technology (SDST) integrates geographical information system to assess the distribution of ground shaking intensity, ground failure probability, building damages, casualties, post-quake fires, debris, lifeline interruptions, economic losses, etc. given any set of seismic source parameters. The SDST may integrate with Taiwan Rapid Earthquake Information Release System (TREIRS) developed by Central Weather Bureau (CWB) to obtain valuable information soon after large earthquakes and to assist in decision-making processes to dispatch rescue and medical resources more efficiently. The SDST may also integrate with probabilistic seismic source model to evaluate various kinds of risk estimates, such as average annual loss, probable maximum loss in one event, and exceeding probability curves of various kinds of losses, to help proposing feasible countermeasures and risk management strategies.

  • PDF

Dielectric Properties of Eicosamethyl Eneasiloxane (Eicosamethyl Eneasiloxane의 유전특성)

  • Cho, Kyung-Soon;Kim, Jae-Hwan;Hong, Jin-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1177-1179
    • /
    • 1993
  • A study has been carried out on the characteristics of dielectric consent and the dissipation factor of Eicosamethyl Eneasiloxane as a function of frequency($30{\sim}10^5$[Hz]) and temperature(-70[$^{\circ}C$] to 65[$^{\circ}C$]). The result shows that a well-defined maxima of the absorption curves characterized by a dipole loss mechanism at a low temperature range. For temperatures in the vicinity of room temperature and higher, the loss in the range of power frequencies are predominantly of ionic nature. The increase of ionic conduction is attributed to the presence of ionizable oxidation products and their increased dissocation feature. The effect of viscosity upon the dipole loss intensity appeared to be considerably less pronounced than that upon ionic conduction loss.

  • PDF

Electrical Characteristics of ZnO Surge Arrester Elements Subjected to the Mixed DC and 60[Hz] AC Voltages (직류+60[Hz] 교류 중첩전압에 대한 ZnO 피뢰기 소자의 전기적 특성)

  • Lee, Bok-Hee;Yang, Soon-Man
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.4
    • /
    • pp.41-47
    • /
    • 2012
  • This paper deals with the electrical characteristics related to power loss, equivalent resistance, and leakage currents flowing through new and deteriorated zinc oxide(ZnO) arrester elements subjected to the mixed DC and 60[Hz] AC voltages. The test specimens were deteriorated by 8/20[${\mu}s$] impulse current of 2.5[kA]. The leakage current-applied voltage($I-V$) characteristic curves of ZnO surge arrester elements were measured as a parameter of the ratio of the peak of 60[Hz] AC voltage to the peak of total voltage. As a consequence of test results, in case of the same applied voltage, the leakage currents flowing through the deteriorated ZnO arrester elements were higher than those flowing through the new ZnO surge arrester elements. The cross-over phenomenon in $I-V$ curves of ZnO surge arrester elements measured as a parameter of the mixed ratio of DC and AC voltages was observed at the low current domain. The effect of DC voltage on the leakage current flowing through ZnO surge arrester elements is pronounced at the same magnitude of test voltages. In addition, the larger the applied number of 8/20[${\mu}s$] impulse current of 2.5[kA] is, the greater the power loss is, in particular, the more severe the power loss increases at higher applied voltages.