• 제목/요약/키워드: longitudinal vertical crack

검색결과 22건 처리시간 0.018초

고강도 철근콘크리트 깊은 보의 전단 강도에 관한 실험평가 (Experimental Evaluation on Shear Strength of High-Strength RC Deep Beams)

  • 이우진;윤승조;김성수
    • 콘크리트학회논문집
    • /
    • 제15권5호
    • /
    • pp.689-696
    • /
    • 2003
  • 최근 ACI 318-02기준 부록 A에 깊은 보의 전단설계에 있어 스트럿-타이 모델을 적용 가능하도록 소개하고 있다. STM은 깊은 보, 개구부가 있는 깊은 보, 코벨, 턱이진 보와 같이 부재의 변형률 분포가 상당히 비선형인 콘크리트 부재의 설계에 광범위하게 사용되고 있다. 본 연구는 고강도콘크리트를 적용한 깊은 보의 각국의 전단강도규준과 전단거동을 평가하고자 실험적 연구로 2점 단순 집중하중을 받는 고강도 RC 깊은 보 5개를 제작하여 파괴 실험을 실시하였다. 또한, 국내 B사의 기계적 정착철물을 사용하여 주인장철근의 양단부에 기계적정착을 적용하였다. 파괴 시 모든 시험체는 가력점과 지지점을 연결하는 주 경사균열이 나타났고, 주인장철근을 기계적 정착한 시험체가 90도 표준갈고리 시험체보다 파괴 시 하중 수행능력이 우수한 것으로 나타났다. 실험결과를 기초로 ACI 318-99 기준, ACI 318-02 부록 A STM, CSA 23.3-94 기준 및 CIRIA Guide-2의 전단설계기준을 비교 평가하였다. ACI 318-99 기준과 ACI 318-02 기준의 스트럿-타이 모델, CIRIA Guide-2는 단순스팬 깊은 보의 극한전단강도 예측 있어 10∼36%정도 낮게 안정적으로 평가하는 것으로 나타났다. ACI 318-99 기준에 의한 전단강도예측값이 표준편차가 가장 낮은 것으로 조사되었다.

반복하중에 따른 수종 임플란트의 피로파절에 관한 연구 (Fatigue fracture of different dental implant system under cyclic loading)

  • 박원주;조인호
    • 대한치과보철학회지
    • /
    • 제47권4호
    • /
    • pp.424-434
    • /
    • 2009
  • 연구목적: 임플란트는 수직교합 하중에는 비교적 잘 견디나 측방하중에 대해서는 약한 역학적 성질을 갖고 있으므로 임플란트의 재료 특성과 기하학적 형태에 따른 응력 분석 연구의 필요성이 제기되고 있다. 연구재료 및 방법: 외부육각구조를 갖는 28개의 임플란트를 7개씩 4군으로 나누어 그 제품에 적합한 UCLA gold abutment를 이용해, 제3형 금합금으로 보철 물을 제작하였고, A군 (3i, FULL $OSSEOTITE^{(R)}$-Implant), B군 (Nobelbiocare, Branemark $System^{(R)}$Mk III Groovy RP), C군 (Neobiotec, $SinusQuick^{(TM)}$ EB), D군 (Osstem, US-II)으로 분류하였다. 고정체와 지대주나사, 지대주를 연결한 후 수직적으로 절단하여 연마한 후 미세경도계를 이용하여 10군데에서 경도측정을 실시하였고, 동적하중 피로시험기를 이용하여 60-600 N범위로 파절시까지 동적 하중을 가하였다. 주사전자현미경을 이용하여 지대주나사 및 고정체의 파절 양상과 파절 위치 등을 관찰하였고, 유한요소분석을 통해 고정체와 지대주 나사에 나타나는 응력 분포와 파절면을 비교 분석하였다. 결과: 1.고정체 경도는 A, B, C, D군에서 각각 245.3, 289.7, 281.3, 300.4 Hv로 D군이 가장 높았고, A군이 가장 낮았다. 지대주 나사의 경도는 A, B, C, D군에서 각각 340.00, 317.62, 306.5, 306.2 Hv로 A군이 가장 높고, D군이 가장 낮았다. 2. 모든 실험군에서 임플란트 고정체의 파절은 응력이 집중되는 고정체 3-4번째 나사산 홈 (valley) 부위 또는 내면의 사공간부와 일치하는 부위에서 발생되었고, 피로수명은 A, B, C, D군에서 각각 31585, 47311, 30141, 105371로 D군이 가장 높았으며, A, B, C군과는 유의한 차이가 있었다(P<.05). 3. 파절양상은 B군과D군에서는 고정체와 나사 모두에서 수직 (longitudinal)파절과 수평 (transverse)파절이 동시에 일어나는 복합 (complex mode) 파절이 관찰 되었고, A와 C군에서는 고정체에서 수평 (transverse mode) 파절만이 관찰되었다. 4. 유한요소분석 결과 인장응력이 가장 높은 고정체 표면부에서 피로 균열이 시발되어 압축응력이 가장 높은 반대편 부위로 피로균열이 전파되었으며, 최대 유효 응력값은 C군이 가장 높았고, B군에서 가장 낮았다. 결론: 피질골 높이와 일치하는 임플란트 고정체 부위에서 최대 인장 주응력이 발생되며, 고정체 사공간부 (dead space)가 최대 인장 주응력이 작용하는 지그 표면과 일치할 때 피로파절이 발생되었다. 따라서 악골에 식립된 임플란트의 신뢰성을 향상시키고 수명을 증대시키기 위해서는 가능한 임플란트 주위의 골소실이 일어나지 않도록 해야 할 것이나 골흡수가 일어나 사공간부 수준까지 진행된다면 임플란트의 파절 빈도가 증가될 수 있으므로 이에 대한 대처가 필요할 것으로 사료된다.