• 제목/요약/키워드: longitudinal stiffeners

검색결과 75건 처리시간 0.021초

Buckling analysis of thin-walled circular hollow section members with and without longitudinal stiffeners

  • Cuong, Bui H.
    • Structural Engineering and Mechanics
    • /
    • 제81권2호
    • /
    • pp.231-242
    • /
    • 2022
  • Numerical solutions for the linear buckling behavior of thin-walled circular hollow section members (CHS) with and without longitudinal stiffeners are presented using the semi-analytical finite strip method (SAFSM) which is developed based on Marguerre's shallow shell theory and Kirchhoff's assumption. The formulation of 3-nodal line finite strip is presented. The CHS members subjected to uniform axial compression, uniform bending, and combination of compression and bending. The buckling behavior of CHS is investigated through buckling curves which relate buckling stresses to lengths of the member. Effects of longitudinal stiffeners are studied with the change of its dimensions, position, and number.

Behavior of composite box bridge girders under localized fire exposure conditions

  • Zhang, Gang;Kodur, Venkatesh;Yao, Weifa;Huang, Qiao
    • Structural Engineering and Mechanics
    • /
    • 제69권2호
    • /
    • pp.193-204
    • /
    • 2019
  • This paper presents results from experimental and numerical studies on the response of steel-concrete composite box bridge girders under certain localized fire exposure conditions. Two composite box bridge girders, a simply supported girder and a continuous girder respectively, were tested under simultaneous loading and fire exposure. The simply supported girder was exposed to fire over 40% of its span length in the middle zone, and the two-span continuous girder was exposed to fire over 38% of its length of the first span and full length of the second span. A measurement method based on comparative rate of deflection was provided to predict the failure time in the hogging moment zone of continuous composite box bridge girders under certain localized fire exposure condition. Parameters including transverse and longitudinal stiffeners and fire scenarios were introduced to investigate fire resistance of the composite box bridge girders. Test results show that failure of the simply supported girder is governed by the deflection limit state, whereas failure of the continuous girder occurs through bending buckling of the web and bottom slab in the hogging moment zone. Deflection based criterion may not be reliable in evaluating failure of continuous composite box bridge girder under certain fire exposure condition. The fire resistance (failure time) of the continuous girder is higher than that of the simply supported girder. Data from fire tests is successfully utilized to validate a finite element based numerical model for further investigating the response of composite box bridge girders exposed to localized fire. Results from numerical analysis show that fire resistance of composite box bridge girders can be highly influenced by the spacing of longitudinal stiffeners and fire severity. The continuous composite box bridge girder with closer longitudinal stiffeners has better fire resistance than the simply composite box bridge girder. It is concluded that the fire resistance of continuous composite box bridge girders can be significantly enhanced by preventing the hogging moment zone from exposure to fire. Longitudinal stiffeners with closer spacing can enhance fire resistance of composite box bridge girders. The increase of transverse stiffeners has no significant effect on fire resistance of composite box bridge girders.

수평보강재가 설치된 플레이트거더 복부판의 조밀기준에 관한 연구 (A Study on Compact Section Requirements for Plate Girder Web Panels with Longitudinal Stiffeners)

  • 이명수;이두성;이성철
    • 대한토목학회논문집
    • /
    • 제30권6A호
    • /
    • pp.503-512
    • /
    • 2010
  • 하중-저항계수 설계법에서 조밀단면은 휨모멘트에 의하여 특정단면이 소성모멘트에 도달하기 전에 복부판과 플랜지에 국부좌굴 및 거더의 횡비틈좌굴이 발생하지 않는 단면으로 정의하고 있다. AASHTO LRFD(2007)에서는 수평보강재를 갖지 않는 단면에 관해서만 조밀단면을 만족하는 복부판의 세장비 규정을 제시하고 있다. 복부판에 설치하는 수평보강재의 역할은 휨 좌굴강도를 증가시키는 것이다. 비록 비보강된 복부판이 조밀단면의 기준을 만족하지 못한다고 할지라도, 적당한 수평보강재를 설치한다면 복부판의 좌굴을 방지할 수 있을 것이다. 그러므로 복부판은 소성모멘트에 도달할 수 있을 것이다. 그러나 AASHTO LRFD(2007)에서는 수평보강재를 설치한 복부판이 조밀단면을 만족하지 못하는 이유에 관하여 분명하게 설명하고 있지 않다. 본 연구에서는 수평보강재를 설치한 복부판에서의 휨에 의한 좌굴과 극한강도거동을 선형과 비선형 유한요소법을 통하여 검토하였다. 비록 조밀단면의 세장비를 만족하지 못하는 복부판이라고 할지라도, 충분한 강성과 적절한 위치에 수평보강재로 보강하면 소성모멘트에 도달할 수 있다는 것을 알아냈다. 비선형해석의 분석을 통해 수평보강재를 갖는 복부판의 조밀단면을 만족하는 새로운 세장비 조건식을 제안하였다.

전자빔 용접기 진공 작업실의 구조설계 (Structural Design on the Vacuum Chamber of Electron Beam Welding System)

  • 이영신;류충현;서정;한유희
    • 한국레이저가공학회지
    • /
    • 제1권1호
    • /
    • pp.11-17
    • /
    • 1998
  • The electron beam welding system has the advantages of the high power density, narrow welding section, and small thermal distortion of a workpiece. Recently, the electron beam welding system is widely used to the airplane engineering, nuclear power plant, and automobile industry. In the present paper, the structural analyses on the vacuum chamber of the electron beam welding system are performed by the F.E.M. analysis. The stiffening characteristics on the geometric shape, stiffener height and stiffener span are investigated. The deflection of the stiffened vacuum chamber under pressure is minimized by longitudinal and transverse stiffeners which are continuous in both direction.

  • PDF

Numerical investigation of buckling strength of longitudinally stiffened web of plate girders subjected to bending

  • Kim, Hee Soon;Park, Yong Myung;Kim, Byung Jun;Kim, Kyungsik
    • Structural Engineering and Mechanics
    • /
    • 제65권2호
    • /
    • pp.141-154
    • /
    • 2018
  • In this study, the bend-buckling strength of the web in longitudinally stiffened plate girder was numerically investigated. The buckling strength of the reinforced web was evaluated through an eigenvalue analysis of the hypothetical model, in which the top and bottom junctions of the web to the flanges were assumed as simple support conditions. Major parameters in the analysis include asymmetrical cross-sectional property, aspect ratio of the web, stiffener locations, and bending rigidity of the stiffeners. The numerical results showed that current AASHTO LRFD specifications (2014) provides the buckling strength from considerably safe side to slightly unsafe side depending on the location of the stiffeners. A modified equation for buckling coefficients was proposed to solve the shortcomings. The bending rigidity requirements of longitudinal stiffeners stipulated in AASHTO were also investigated. It is desirable to increase the rigidity of the stiffeners when the aspect ratio is less than 1.0.

Effect of stiffeners on steel plate shear wall systems

  • Rahmzadeh, Ahmad;Ghassemieh, Mehdi;Park, Yeonho;Abolmaali, Ali
    • Steel and Composite Structures
    • /
    • 제20권3호
    • /
    • pp.545-569
    • /
    • 2016
  • Stiffeners have widely been used in lateral load resisting systems to improve the buckling stability of shear panels in steel frames. However, due to major differences between plate girders and steel plate shear walls (SPSWs), use of plate girder equations often leads to uneconomical and, in some cases, incorrect design of stiffeners. Hence, this paper uses finite element analysis (FEA) to describe the effect of the rigidity and arrangement of stiffeners on the buckling behavior of plates. The procedures consider transverse and/or longitudinal stiffeners in various practical configurations. Subsequently, curves and formulas for the design of stiffeners are presented. In addition, the influence of stiffeners on the inward forces subjected to the boundary elements and the tension field angle is investigated as well. The results indicate that the effective application of stiffeners in SPSW systems not only improves the structural behavior, such as stiffness, overall strength and energy absorption, but also leads to a reduction of the forces that are exerted on the boundary elements.

상자형 복부판의 좌굴 거동에 관한 연구 (A Study on the Buckling Behavior of the Web of Box Girders)

  • 이상우;권영봉
    • 한국강구조학회 논문집
    • /
    • 제9권1호통권30호
    • /
    • pp.37-49
    • /
    • 1997
  • The buckling behavior of the web of steel girders are largely dependent on the size and the location of stiffeners and the restraining effect of top and bottom flanges. Elastic and inelastic buckling analyses based or the Spline Finite Strip Method were executed to study the stiffening effect of the longitudinal stiffener on the web of box girders and to find how the top and bottom flanges had effects on the web, where geometric boundary conditions were limited by both hinged, both fixed and the flange sections. The basic assumption for the longitudinal end boundary conditions was that the vertical stiffeners had the rigidity enough to force nil deflection line on the web panel so that the junction line between web and vertical stiffener was assumed to be hinged boundary conditions. The provisions on the longitudinal stiffener of the plate and box girders of the Korean Standard Highway Bridge Specifications(1995) and AASHTO Specifications(1994 LRFD) were compared with the results obtained numerically for the various longitudinal stiffener size of box girders. Simple equations and design curves for the longitudinal stiffener of the web were proposed for the practical use.

  • PDF

Effect of varying the size of flatbar stiffeners on the buckling behaviour of thin cylinders on local supports

  • Vanlaere, Wesley;Impe, Rudy Van;Lagae, Guy;Maes, Thomas
    • Structural Engineering and Mechanics
    • /
    • 제19권2호
    • /
    • pp.217-230
    • /
    • 2005
  • A steel silo traditionally consists of a cylindrical and a conical shell. In order to facilitate emptying operations, the cylinder is placed on local supports. This may lead to dangerous stress concentrations and eventually to local instability of the cylindrical wall. In this contribution, the locally supported cylinder is strengthened by means of ring stiffeners and longitudinal stiffeners and the effect of their dimensions on the buckling stress is investigated. This study leads to a number of diagrams, each of them representing the effect of one of the dimensions on the buckling stress. In each diagram, the failure pattern corresponding to the buckling stress is indicated.

사다리꼴 보강재를 활용한 패널의 최적설계 (Optimal Design of Panel with Trapezoidal Type Stiffeners)

  • 원종진;이종선;윤희중
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.3-8
    • /
    • 2003
  • In this study, using linear and nonlinear deformation theories and by closed-form analysis and finite difference energy methods, respectively, various buckling load factors are obtained for stiffened laminated composite panel with trapezoidal type stiffeners and various longitudinal length to radius ratios, which are made from Carbon/Epoxy USN 125 prepreg and are simply-supported on four edges under uniaxial compression, and then for them, optimal design analyses are carried out by the nonlinear search optimizer, ADS.

  • PDF