• Title/Summary/Keyword: longitudinal permeability

Search Result 31, Processing Time 0.025 seconds

Temperature dependence of permeability and magnetoimpedance effect in $Co_{70}Fe_5Si_{15}Nb_{2.2}Cu_{0.8}B_7$ ribbons

  • Phan, Manh-Huong;Kim, Yong-Seok;Quang, Pham-Hong;Yu, Seong-Cho;Nguyen Chau;Chien, Nguyen-Xuan
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2003.06a
    • /
    • pp.88-89
    • /
    • 2003
  • During the past decade, giant magnetotransport phenomena such as giant magetoresistance (GMR) in thin films and in manganese perovskites, and, giant magnetoimpedance (GMI) in soft magnetic amorphous ribbons, have brought much interest in the basic physical understanding and their applications as magnetic recording heads and in magnetic sensors technology. Among the parameters required for the quality of a magnetic sensor, temperature dependences of GMR and GMI profiles are playing an important role. In the present work, we have studied temperature dependences of the longitudinal permeability and giant magnetoimpedance effect in $Co_{70}$F $e_{5}$S $i_{15}$ N $b_{2.2}$C $u_{0.8}$ $B_{7}$ amorphous ribbons expecting as a promising candidate in the domain of magnetic sensors.rs.rs.rs.s.

  • PDF

A Study on the Ground Movement around Tunnel Reinforced by Umbralla Arch Method (Umbrella Arch 공법에 의한 터널 천단부 보강시 주변 지반의 거동에 관한 연구)

  • 배규진;김창용;문홍득;훙성완
    • Tunnel and Underground Space
    • /
    • v.7 no.4
    • /
    • pp.299-309
    • /
    • 1997
  • Soil and rock improvement and reinforcement techniques are applied to achieve safe tunnel excavation in difficult geological conditions. The Umbrella Arch Method(UAM), one of the auxiliary techniques, is used to reduce ground permeability and improve stabtility of the tunnel by inserting a series of steel pipes into ground around the crown inclined to the longitudinal axis of the tunnel. Additionally, multi-step grouting is added through the steel pipes. UAM combines the advantages of a modern forepoling system with the grouting injection method. This technique has been applied in subway, road and utility tunneling sites for the last few years in Korea. This paper presents the results of analysis of the case studies on ground movements associated with UAM used in the Seoul Subway line 5 constructon site. Improvement of tunnel stability and decrease of ground settlement expected with pipe insertion are also discussed. Finally, the method to minimize ground settlements caused by NATM tunnelling are suggested.

  • PDF

A Numerical Study on Reinforced effect of the Railway Tunnel by Umbrella Arch Method (Umbrella Arch 공법이 적용된 철도터널의 강관보강효과에 관한 수치해석적 연구)

  • Lee Hyun Suk;Lee Jun S.;Bang Chun Suk;Kim Yun Tae
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1090-1095
    • /
    • 2004
  • Umbrella Arch Method(UAM), among others. is commonly applied to increase the facial stability during tunnel excavation and, depending on the field condition, additional reinforcement techniques can be used simultaneously. UAM, together with grouting method, is normally used to reduce ground permeability and improve stability of the tunnel by inserting a series of steel pipes into the ground around the crown inclined to the longitudinal axis of the tunnel. However. there has not been much rigorous study on the effectiveness of UAM, and most of UAM installations depend on empirical judgement rather than on engineering calculation, .In this study, the effectiveness of UAM is demonstrated based on the constitutive relationship involving UAM derived from the mechanics of composite material, and the numerical investigation is compared with small scale experiments on the tunnel reinforcement.

  • PDF

Microwave Measurement of Complex Permittivity of Dielectric Resonators (초고주파 유전체공진기의 복소유전율 측정)

  • Kim Jeong-Phill;Park, Wee-Sang
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.11
    • /
    • pp.9-19
    • /
    • 1990
  • A theoretical analysis and measurement technique to determine the complex permittivity and permeability of cylindrical and ring type dielectric resonators is given. The resonant frequency, unloaded quality factor and physical dimensions of dielectric resonator placed between two parallel conducting plates are used to evaluate the complex permittivity and permeability. This process is repeated for other higher-order modes to expand the evaluation at higher resonant frequencies. The nature of each mode is identified by measuring the variations of field strength along the azimuthal and longitudinal direction. An error analysis taking into account various error sources reveals that $TE_{0np}$ or quasi-TE modes yield the least amount of measurement error, which is less than $0.5{\%}$for the real part, $4{\%}$for the imaginary part of complex permittivity.

  • PDF

Ultra Low Field Sensor Using GMI Effect in NiFe/Cu Wires

  • Kollu, Pratap;Kim, Doung-Young;Kim, Cheol-Gi
    • Journal of Magnetics
    • /
    • v.12 no.1
    • /
    • pp.35-39
    • /
    • 2007
  • A highly sensitive magnetic sensor using the Giant MagnetoImpedance effect has been developed. The sensor performance is studied and estimated. The sensor circuitry consists of a square wave generator (driving source), a sensing element in a form of composite wire of a 25 $\mu$m copper core electrodeposited with a thin layer of soft magnetic material ($Ni_{80}Fe_{20}$), and two amplifier stages for improving the gain, switching mechanism, scaler circuit, an AC power source driving the permeability of the magnetic coating layer of the sensing element into a dynamic state, and a signal pickup LC circuit formed by a pickup coil and an capacitor. Experimental studies on sensor have been carried out to investigate the key parameters in relation to the sensor sensitivity and resolution. The results showed that for high sensitivity and resolution, the frequency and magnitude of the ac driving current through the sensing element each has an optimum value, the resonance frequency of the signal pickup LC circuit should be equal to or twice as the driving frequency on the sensing element, and the anisotropy of the magnetic coating layer of the sensing wire element should be longitudinal.

A Study on the Development of Nanorod-Type Ni-Rich Cathode Materials by Using Co-Precipitation Method (공침법을 통한 나노로드 형태의 니켈계 양극 소재 개발에 관한 연구)

  • Joohyuk Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.215-222
    • /
    • 2024
  • Ni-rich cathode materials have been developed as the most promising candidates for next-generation cathode materials for lithium-ion batteries because of their high capacity and energy density. In particular, the electrochemical performance of lithium-ion batteries could be enhanced by increasing the contents of nickel ion. However, there are still limitations, such as low structural stability, cation mixing, low capacity retention and poor rate capability. Herein, we have successfully developed the nanorod-type Ni-rich cathode materials by using co-precipitation method. Particularly, the nanorod-type primary particles of LiNi0.7Co0.15Mn0.15O2 could facilitate the electron transfer because of their longitudinal morphology. Moreover, there were holes at the center of secondary particles, resulting in high permeability of the electrolyte. Lithium-ion batteries using the prepared nanorod-type LiNi0.7Co0.15Mn0.15O2 achieved highly improved electrochemical performance with a superior rate capability during battery cycling.

Hydrodynamic Dispersion Characteristics of Multi-soil Layer from a Field Tracer Test and Laboratory Column Experiments (현장추적자시험과 실내주상실험을 이용한 복합토양층의 수리분산특성 연구)

  • Kang, Dong-Hwan;Yang, Sung-Il;Kim, Tae-Yeong;Kim, Sung-Soo;Chung, Sang-Yong
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.4
    • /
    • pp.1-7
    • /
    • 2008
  • This study analyzed for hydrodynamic dispersion characteristics of multi-soil layer (Silt and clay, Find sand, Coarse sand), data of a field tracer test on the multi-soil layer and data of laboratory column experiments on the samples on each soil layers. Through the analysis of permeability and flow, MS (Silt and clay) and FS (Fine sand), which were low effective porosity, were higher average linear velocity while CS (Coarse sand), which was high effective porosity, was higher hydraulic conductivity. Hydraulic conductivity function based on average soil particle diameter was assumed Y=$3.49{\times}10^{-8}e^{15320x}$ and coefficient of determination was 0.90. Average linear velocity function based on average soil particle diameter was assumed Y=$1.88{\times}10^{-7}e^{11459x}$ and coefficient of determination was 0.81. Longitudinal dispersivity function based on average soil particle diameter was Y = 0.00256$e^{5971x}$ and coefficient of determination was 0.98. According to the linear regression analysis of average linear velocity and longitudinal dispersivity, assumed function was Y = 21.7527x + 0.0063, and coefficient of determination was 0.9979. The ratio of field scale/laboratory scale was 54.09, it exhibited scale-dependent effect of hydrodynamic dispersion. Field longitudinal dispersivity (1.39m) was 7.47 times as higher than longitudinal dispersivity estimated by the methods of Xu and Eckstein (1995). Hydrodynamic dispersion on CS layer was occurred mainly by diffusion flow in the test aquifer.

The Characteristics of Hydrogeological Parameters of Unconsolidated Sediments in the Nakdong River Delta of Busan City, Korea

  • Khakimov, Elyorbek;Chung, Sang Yong;Senapathi, Venkatramanan;Elzain, Hussam Eldin;Son, JooHyeong
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.3
    • /
    • pp.27-41
    • /
    • 2017
  • This study dealt with the characteristics and the interrelations of hydrogeological parameters such as hydraulic conductivity, dispersivity and effective porosity of unconsolidated sediments for providing the basic data necessary for the planning of the management and preservation of groundwater quality in the Nakdong River Delta of Busan City, Korea. Groundwater quality in this area has been deteriorated due to seawater intrusion, agricultural fertilizer and pesticide, industrial wastewater, and contaminated river water. The physical properties (grain size distribution, sediment type, sorting) and aquifer parameters (hydraulic conductivity, effective porosity, longitudinal dispersivity) were determined from grain size analysis, laboratory permeability test and column tracer test. Among 36 samples, there were 18 Sand (S), 7 Gravelly Sand (gS), 5 Silty Sand (zS), 5 Muddy Sand (mS), and 1 Sandy Silt (sZ). Hydraulic conductivity was determined through a falling head test, and ranged from $9.2{\times}10^{-5}$ to $2.9{\times}10^{-2}cm/sec$ (0.08 to 25.6 m/day). From breakthrough curves, dispersivity was calculated to be 0.35~3.92 cm. Also, effective porosity and average linear velocity were obtained through the column tracer test, and their values were 0.04~0.46 and 1.06E-04~6.49E-02 cm/sec, respectively. Statistical methods were used to understand the interrelations among aquifer parameters of hydraulic conductivity, effective porosity and dispersivity. The relation between dispersivity and hydraulic conductivity or effective porosity considered the sample length, because dispersivity was affected by experimental scale. The relations between dispersivity and hydraulic conductivity or effective porosity were all in inverse proportion for all long and short samples. The reason was because dispersivity was in inverse proportion to the groundwater velocity in case of steady hydrodynamic dispersion coefficient, and groundwater velocity was in proportion to the hydraulic conductivity or effective porosity. This study also elucidated that longitudinal dispersivity was dependent on the scale of column tracer test, and all hydrogeological parameters were low to high values due to the sand quantity of sediments. It is expected that the hydrogeological parameter data of sediments will be very useful for the planning of groundwater management and preservation in the Nakdong River Delta of Busan City, Korea.

Studies on Improving Preservative Treatability of Japanese Larch Heartwood by Presteaming (증기(蒸氣) 전처리(前處理)에 의(依)한 낙엽송(落葉松) 심재(心材)의 방부제(防腐劑) 처리도(處理度) 개선(改善)에 관(關)한 연구(硏究))

  • Kang, Sung-Mo;Paik, Ki-Hyon;Kim, Gyu-Hyeok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.15-22
    • /
    • 1997
  • The effectiveness of presteaming for improving CCA treatability on refractory Japanese larch heartwood was investigated in this study. Presteaming was effective on improving treatability, and the extent of improvement was dependent on moisture contents of wood specimen and steaming conditions. Green wood showed higher average value in both preservative retention and penetration than dry wood, and steaming under pressure conditions also had higher treatability than steaming at atmospheric conditions. The degree of improvement for treatability was increased with the extension of steaming period. Treatability of dry wood pres teamed under pressure conditions more than 6 hours and green wood for 3 hours was similar to that enhanced by conventional incising. Presteaming green wood under pressure conditions more than 6 hours was more effective than conventional incising in improvement of CCA treatability, and resultant treatability satisfied a minimum value required for CCA-treated wood for being used at the regions of hazard class H3 and H4. In addition, an improvement of treatability by presteaming was due to an increase in permeability resulted from the degradation of hemicelluloses within aspirated pit membrane and cell wall, not the removal of extractives from pit membrane. The reduction in strength, measured as longitudinal compressive strength, due to pres teaming was related with the degradation of hemicelluloses, and was increased as steaming conditions were severe. The degree of strength reduction associated with presteaming treatment to obtain required treatability could be quantified from the relatively good relation between the increase in treatability and the decrease in strength.

  • PDF

Physical Properties of Liquid Ammonia Wood for Bending (휨가공을 위한 액체암모니아 처리재의 물리적 성질)

  • Kang, Ho-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.52-60
    • /
    • 2003
  • The physical properties of small hardwood and softwood specimens treated with liquid ammonia were investigated. The specimens treated for 4 or 18 hours were compared with the controls. The EMCs of the liquid ammonia treated specimens were higher than those of the controls when conditioned at the same humidities. However once oven-dried they didn't show any significant differences in EMCs. With the increase of liquid ammonia treatment time specimens shrank in radial and tangential directions, but not in longitudinal direction. As liquid ammonia treatment time increased the ultrasonic velocities of specimens decreased and their densities increased, thus their dynamic MOEs decreased. For chestnut specimens the presteamed were more plasticized than the liquid ammonia treated. Incising on the surfaces of specimens didn't improve liquid ammonia permeability in both hardwoods and softwoods. Liquid ammonia treatment was very effective for plasticizing 5 mm thick softwoods. Relative dielectric constants and thermal conductivities were measured with both liquid ammonia treated and control specimens.