• Title/Summary/Keyword: longitudinal fracture

Search Result 147, Processing Time 0.031 seconds

Prediction of Change in Ground Condition Ahead of Tunnel Face Using Three-dimensional Convergence Analysis (터널 3차원 내공변위의 해석을 통한 막장전방 지반상태변화 예측)

  • 김기선;김영섭;유광호;박연준;이대혁
    • Tunnel and Underground Space
    • /
    • v.13 no.6
    • /
    • pp.476-485
    • /
    • 2003
  • The purpose of this study is to present an analysis method for the prediction of the change of ground conditions. To this end, three-dimensional convergence displacements is analyzed in several ways to estimate the trend of displacement change. Three-dimensional arching effect is occurred around the unsupported excavation surface including tunnel face when a tunnel is excavated in a stable rock mass. If the ground condition ahead of tunnel face changes or a weak fracture zone exists a specific trend of displacement change is known to be occurred from the results of the existing researches. The existence of a discontinuity, whose change in front of the tunnel face, can be predicted from the ratio of L/C (longitudinal displacement at crown divided by settlement at crown) etc. Therefore, the change of ground condition and the existence of a fracture zone ahead of tunnel face can be predicted by monitoring three-dimensional absolute displacements during excavation, and applying the methodology presented in this study.

A retrospective computed tomography analysis of maxillary fractures and the clinical outcomes of their unreduced parts

  • Chung, Chan Min;Tak, Seung Wan;Lim, Hyoseob;Cho, Sang Hun;Lee, Jong Wook
    • Archives of Craniofacial Surgery
    • /
    • v.20 no.6
    • /
    • pp.370-375
    • /
    • 2019
  • Background: Some parts of a maxillary fracture-for example, the medial and posterior walls-may remain unreduced because they are unapproachable or hard to deal with. This study aimed to investigate the self-healing process of unreduced maxillary membranous parts of fractures through a longitudinal computed tomography (CT) analysis of cases of unilateral facial bone injuries involving the maxillary sinus walls. Methods: Thirty-two patients who had undergone unilateral facial bone reduction surgery involving the maxillary sinus walls without reduction of the medial and posterior walls were analyzed in this retrospective chart review. Preoperative, immediate postoperative, and 3-month postoperative CT scans were analyzed. The maxillary sinus volume was calculated and improvements in bone continuity and alignment were evaluated. Results: The volume of the traumatized maxillary sinuses increased after surgery, and expanded significantly by 3 months postoperatively (p< 0.05). The significant preoperative volume difference between the normal and traumatized sides (p= 0.024) resolved after surgery (p> 0.05), and this resolution was maintained at 3 months postoperatively (p > 0.05). The unreduced parts of the maxillary bone showed improved alignment and continuity (in 75.0% and 90.6% of cases, respectively), and improvements in bone alignment and bone continuity were found to be correlated using the Pearson chi-square test (p= 0.002). Conclusion: Maxillary wall remodeling through self-healing occurred concomitantly with an increase in sinus volume and simultaneous improvements in bone alignment and continuity. Midfacial surgeons should be aware of the natural course of unreduced fractured medial and posterior maxillary walls in complex maxillary fractures.

A Study on the Failure Modes of Neat Kevlar Fabric and Kevlar Liquid Armor Impregnated with Shear Thickening Fluid (케블라 직물과 전단농화유체로 함침된 케블라 액체 방탄재의 파단모드 연구)

  • Yoon, Byung-Il;Song, Heung-Sub;Paik, Jong-Gyu
    • Composites Research
    • /
    • v.20 no.3
    • /
    • pp.17-24
    • /
    • 2007
  • In this study, the failure modes by ballistic impacts were studied both for a neat Kevlar woven fabric and a Kevlar liquid armor impregnated with shear thickening fluid (STF) containing silica particles. These two materials showed quite different failure modes macroscopically in ballistic impacts tests used by Cal.22 FSP and 9mm FMJ bullet. Yarn pull-out for the neat Kevlar woven fabric and yarn fracture occurred partially through all plies from 1st ply to last one for the STF-Kevlar are an important energy absorption mechanisms. The results observed by S.E.M showed commonly fiber damage which are torn skin in the longitudinal fiber direction, fiber split axially and fiber fracture for two materials. The reasons why STF-kevlar liquid armor material exhibits excellent ballistic performance are as follow: firstly the increased friction forces between yarn-yarn and fabric-fabric covered with silica particles and secondary the evolution of shear thickening phenomenmon resulting in suppression of yarn mobility.

Investigation of the behavior of a tunnel subjected to strike-slip fault rupture with experimental approach

  • Zhen Cui;Tianqiang Wang;Qian Sheng;Guangxin Zhou
    • Geomechanics and Engineering
    • /
    • v.33 no.5
    • /
    • pp.477-486
    • /
    • 2023
  • In the studies on fault dislocation of tunnel, existing literatures are mainly focused on the problems caused by normal and reverse faults, but few on strike-slip faults. The paper aims to research the deformation and failure mechanism of a tunnel under strike-slip faulting based on a model test and test-calibrated numerical simulation. A potential faulting hazard condition is considered for a real water tunnel in central Yunnan, China. Based on the faulting hazard to tunnel, laboratory model tests were conducted with a test apparatus that specially designed for strike-slip faults. Then, to verify the results obtained from the model test, a finite element model was built. By comparison, the numerical results agree with tested ones well. The results indicated that most of the shear deformation and damage would appear within fault fracture zone. The tunnel exhibited a horizontal S-shaped deformation profile under strike-slip faulting. The side walls of the tunnel mainly experience tension and compression strain state, while the roof and floor of the tunnel would be in a shear state. Circular cracks on tunnel near fault fracture zone were more significant owing to shear effects of strike-slip faulting, while the longitudinal cracks occurred at the hanging wall.

Prediction of Shear Strength in High-Strength Concrete Beams without Web Reinforcement Considering Size Effect (크기효과를 고려한 복부보강이 없는 고강도 콘크리트 보의 전단강도 예측식의 제안)

  • Bae, Young-Hoon;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.820-828
    • /
    • 2003
  • Recent research has indicated that the current ACI shear provision provides unconservative predictions for large slender beams and beams with low level of longitudinal reinforcement, and conservative results for deep beams. To modify some problems of ACI shear provision, ultimate shear strength equation considering size effect and arch action to compute shear strength in high-strength concrete beams without stirrups is presented in this research. Three basic equations, namely size reduction factor, rho factor, and arch action factor, are derived from crack band model of fracture mechanics, analysis of previous some shear equations for longitudinal reinforcement ratio, and concrete strut described as linear prism in strut-tie model deep beams. Constants of basic equations are determined using statistical analysis of previous shear testing data. To verify proposed shear equation for each variable, effective depth, longitudinal reinforcement ratio, concrete compressive strength and shear span-to-depth ratio, about 300 experimental data are used and proposed shear equation is compared with ACI 318-99 code, CEB-FIP Model code, Kim &Park's equation and Zsutty's equation. The proposed shear equation is not only simpler than other shear equations, it is but also shown to be economical predictions and reasonable safety margin. Hence proposed shear strength equation is expected to be applied to practical shear design.

Characteristics of Hydrodynamic Dispersion Using a Natural Gradient Tracer Test in a Fractured Rock at the Jwacheon-dong, Busan City (부산시 좌천동 단열암반층에서 자연구배 추적자시험을 이용한 수리분산특성 연구)

  • Chung Sang-Yong;Kang Dong-Hwan;Kim Byung-Woo
    • The Journal of Engineering Geology
    • /
    • v.16 no.3 s.49
    • /
    • pp.245-254
    • /
    • 2006
  • Using a natural gradient tracer test, the characteristics of hydrodynamic dispersion according to each depth of a fractured rock were studied, and the effective porosity and longitudinal dispersivity of the fractured rock were estimated. The difference of vertical hydrodynamic dispersion was identified by concentration breakthrough curves linear regression analyses of bromide concentrations according to depths versus time, and hydraulic fracture characteristics at two intervals of the monitoring well. Higher concentration and faster arrival time at GL- 18 m depth (RQD 13%, average joint spacing 2 cm, TCR 100%) than at GL- 25 m depth (RQD 41%, average joint spacing 7 cm, TCR 100%) resulted from shorter distance and more fractures. Tracer was transported through the 1 st fractures until the arrival of its peak concentration and through the 2nd fractures or matrix diffusion after the arrival of its peak concentration. The increase/decrease slopes of bromide concentration versus time were 3.46/-1.57 at GL-18 m depth and 3.l9/-0.47 at GL- 25 m depth of the monitoring well. So the faster bromide transport was confirmed at GL- 18 m depth with more fractures. The concentration increment of bromide was fitted by a Gaussian function and the concentration decrement of bromide was fitted by an exponential function. Effective porosity and longitudinal dispersivity estimated by CATTI code were 10.50% and 0.85 m, respectively.

Green Composites. II. Environment-friendly, Biodegradable Composites Using Ramie Fibers and Soy Protein Concentrate (SPC) Resin

  • Nam Sung-Hyun;Netravali Anil N.
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.380-388
    • /
    • 2006
  • Fully biodegradable and environment-friendly green composite specimens were made using ramie fibers and soy protein concentrate (SPC) resin. SPC was used as continuous phase resin in green composites. The SPC resin was plasticized with glycerin. Precuring and curing processes for the resin were optimized to obtain required mechanical properties. Unidirectional green composites were prepared by combining 65% (on weight basis) ramie fibers and SPC resin. The tensile strength and Young's modulus of these composites were significantly higher compared to those of pure SPC resin. Tensile and flexural properties of the composite in the longitudinal direction were moderate and found to be significantly higher than those of three common wood varieties. In the transverse direction, however, their properties were comparable with those of wood specimens. Scanning electron microscope (SEM) micrographs of the tensile fracture surfaces of the green composite indicated good interfacial bonding between ramie fibers and SPC resin. Theoretical values for tensile strength and Young's modulus, calculated using simple rule of mixture were higher than the experimentally obtained values. The main reasons for this discrepancy are loss of fiber alignment, voids and fiber compression due to resin shrinking during curing.

Spinal Cord Injury without Radiographic Abnormalities in Children (소아의 척추 외상)

  • Yang, Hong-Ki;Doo, Jung-Hee
    • Physical Therapy Korea
    • /
    • v.3 no.1
    • /
    • pp.57-64
    • /
    • 1996
  • Spinal cord injury in child often occurs without evidence of fracture or dislocation. The mechanisms of neural damage in this syndrome of spinal cord injury without radiographic abnormality(SCIWORA) include flexion, hyperextension, longitudinal distraction, and ischemia. Inherent elasticity of the vertebral column in infants and young children, among other age-related anatomical peculiarities, render the pediatric spine exceedingly vulnerable to deforming forces. The neurological lesions encountered in this syndrome include a high incidence of complete and severe partial cord lesions. Children younger than 8years old sustain more serious neurological damage and suffer a larger number of upper cervical cord lesions than children aged over 8 years. Of the children with SCIWORA. 52% have delayed onset of paralysis up to 4 days after injury, and most of these children recall transient paresthesia, numbness, or subjective paralysis. The long-term prognosis in cases of SCIWORA is grim. Most children with complete and severe lesions do not recover; only those with initially mild neural injuries make satisfactory neurological recovery.

  • PDF

Behavior and design of stainless steel tubular member welded end connections

  • Kiymaz, Guven;Seckin, Edip
    • Steel and Composite Structures
    • /
    • v.17 no.3
    • /
    • pp.253-269
    • /
    • 2014
  • Among the various alternatives to make a steel tubular member connection, making a slotted and gusset plate welded connection is one of the most frequently preferred alternatives. This type of connection is essentially an end connection that is made by slotting the tube longitudinally, inserting the gusset plate and then placing longitudinal fillet welds at the tube-to-plate interface. In this paper an experimental study on the behaviour of such connections in stainless steel is presented. 24 specimens were tested under concentrically applied axial tensile forces for varying tube-to-gusset plate weld lengths. Both circular and box section members were considered in the test program. Load-deformation curves were obtained and comparisons were made in terms of strength and ductility. The results obtained from the study were then critically examined and compared with currently available design guidance for slotted gusset plate welded tubular end connections. It is noted that no specific rules exist in international specifications on structural stainless steel which cover the design of such connections. Therefore, the results of this study are compared with the existing design rules for carbon steel.

A Study on the Types of School Accidents and First Aids at Elementary, Middle, and High Schools in a Local Province (일 지역 초.중.고등학교 사고 유형과 이에 따른 응급처치 실태)

  • Cho, Byung-Jun
    • Journal of the Korean Society of School Health
    • /
    • v.20 no.1
    • /
    • pp.45-52
    • /
    • 2007
  • Purpose: The purpose of this study was to examine the types of school accidents and their first aids at Elementary, Middle, High Schools in a local area. Methods: The subjects were 1062 students who have had episodes of school accidents from 730 (Elementary = 429, Middle = 188, High = 113) schools in Chungnam province from January to December, 2006. Data were collected from accident-related record from school nurse and 'School Safety Fund', and analyzed using the SPSS Version 13.0 programs and the results and conclusions are as follows: Results: The proportion of school accidents occurred were in middle(0.43%), high(0.35%), primary(0.30%) school students. And the most frequent type of accident was fracture and then sprain. Most school accidents broke out in playground during resting time, and followed by physical education class. The most frequent cause of school accidents was carelessness and first aid was fixation the injury. Conclusion: Based on these findings, school-based and continuous safety education programs and emergency care system within school and in community can be suggested in collaboration with health-related resources. Further longitudinal study to identify causes and kinds of school accidents and can also be recommended.