• Title/Summary/Keyword: longitudinal fracture

Search Result 145, Processing Time 0.025 seconds

Non-linear longitudinal fracture in a functionally graded beam

  • Rizov, Victor I.
    • Coupled systems mechanics
    • /
    • v.7 no.4
    • /
    • pp.441-453
    • /
    • 2018
  • Longitudinal fracture in a functionally graded beam configuration was studied analytically with taking into account the non-linear behavior of the material. A cantilever beam with two longitudinal cracks located symmetrically with respect to the centroid was analyzed. The material was functionally graded along the beam width as well as along the beam length. The fracture was studied in terms of the strain energy release rate. The influence of material gradient, crack location along the beam width, crack length and material non-linearity on the fracture behavior was investigated. It was shown that the analytical solution derived is very useful for parametric analyses of the non-linear longitudinal fracture behavior. It was found that by using appropriate material gradients in width and length directions of the beam, the strain energy release rate can be reduced significantly. Thus, the results obtained in the present paper may be applied for optimization of functionally graded beam structure with respect to the longitudinal fracture performance.

Longitudinal cracks in non-linear elastic beams exhibiting material inhomogeneity

  • Rizov, Victor I.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.2
    • /
    • pp.153-163
    • /
    • 2019
  • Longitudinal fracture behavior of non-linear elastic beam configurations is studied in terms of the strain energy release rate. It is assumed that the beams exhibit continuous material inhomogeneity along the width as well as along the height of the crosssection. The Ramberg-Osgood stress-strain relation is used for describing the non-linear mechanical behavior of the inhomogeneous material. A solution to strain energy release rate is derived that holds for inhomogeneous beams of arbitrary cross-section under combination of axial force and bending moments. Besides, the solution may be applied at any law of continuous distribution of the modulus of elasticity in the beam cross-section. The longitudinal crack may be located arbitrary along the beam height. The solution is used to investigate a longitudinal crack in a beam configuration of rectangular cross-section under four-point bending. The crack is located symmetrically with respect to the beam mid-span. It is assumed that the modulus of elasticity varies continuously according a cosine law in the beam cross-section. The longitudinal fracture behavior of the inhomogeneous beam is studied also by applying the J-integral approach for verification of the non-linear solution to the strain energy release rate derived in the present paper. Effects of material inhomogeneity, crack location along the beam height and non-linear mechanical behavior of the material on the longitudinal fracture behavior are evaluated. Thus, the solution derived in the present paper can be used in engineering design of inhomogeneous non-linear elastic structural members to assess the influence of various material and geometrical parameters on longitudinal fracture.

Low Cycle Fatigue Behavior of Longitudinal Reinforcement (축방향철근의 저주파 피로 거동)

  • Lee, Jae-Hoon;Ko, Seong-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.263-271
    • /
    • 2010
  • The purposes of this study is to verify the fracture characteristic of steel which is manufactured in Korea, subjected to cyclic loading. This investigation deals with the low cycle fatigue behavior of longitudinal reinforcement in reinforced concrete bridge substructure (piles and columns of piers). Eighty-one specimens of longitudinal reinforcement were tested under axial strain controlled reversed cyclic tests with strain amplitudes. The selected test variables are ratio of tension strain to compression strain, yield stress of longitudinal reinforcement, ratio of diameter of longitudinal steel to clear length of longitudinal steel, size of longitudinal steel and strain amplitudes. Low cycle fatigue behavior and low-cycle fatigue life are investigated and discussed in this paper.

Elastic-plastic fracture of functionally graded circular shafts in torsion

  • Rizov, Victor I.
    • Advances in materials Research
    • /
    • v.5 no.4
    • /
    • pp.299-318
    • /
    • 2016
  • Analytical investigations were performed of a longitudinal crack representing a cylindrical surface in circular shafts loaded in torsion with taking into account the non-linear material behavior. Both functionally graded and multilayered shafts were analyzed. It was assumed that the material is functionally graded in radial direction. The mechanical behavior of shafts was modeled by using non-linear constitutive relations between the shear stresses and shear strains. The fracture was studied in terms of the strain energy release rate. Within the framework of small strain approach, the strain energy release rate was derived in a function of the torsion moments in the cross-sections ahead and behind the crack front. The analytical approach developed was applied to study the fracture in a clamped circular shaft. In order to verify the solution derived, the strain energy release rate was determined also by considering the shaft complimentary strain energy. The effects were evaluated of material properties, crack location and material non-linearity on the fracture behavior. The results obtained can be applied for optimization of the shafts structure with respect to the fracture performance. It was shown that the approach developed in the present paper is very useful for studying the longitudinal fracture in circular shafts in torsion with considering the material non-linearity.

Reason of Die Fracture in Automatic Multistage Cold Forging of a High Strength Ball-Stud (고강도 재료의 볼스타드 냉간자동단조에서 발생한 금형의 파괴 원인 분석)

  • Li, Q.S.;Eom, J.G.;Kim, Y.S.;Kim, E.J.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.124-127
    • /
    • 2009
  • In this paper, a longitudinal die insert fracture which occurred during cold forging of a high strength ball-stud with a sound die design nearly optimized empirically for relatively low strength material of SCM435 is introduced and the reason is revealed. A comparative study between SCM435 and ESW105 is quantitatively made using a thermoelastic finite element method for die structural analysis coupled with a forging simulator theoretically based on a rigid-plastic finite element method. It has been shown that the longitudinal die insert fracture caused from non-optimized value of shrink fit, emphasizing that the die optimal design is inevitable for cold forging of high strength materials.

  • PDF

Experimental and Analytical Study on the Burst Pressure of Steam Generator Tubes with T-type Combination Cracks (증기발생기 전열관에 존재하는 T-형 복합 균열의 파열압력 시험 및 해석)

  • Shin, Kyu-In;Park, Jai-Hak;Yoon, Kee-Bong
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.2 s.70
    • /
    • pp.38-43
    • /
    • 2005
  • Several nuclear power plants reported that they often found the combination cracks, which consist of longitudinal and circumferential cracks in the tubes. For the burst pressure of a tube with a single longitudinal or circumferential crack several experimental equations have been proposed in published literatures. But for the combination crack appropriate fracture criterion has not been proposed yet. In this study the burst pressures of a tube with a longitudinal crack or a T-type combination crack consisting of longitudinal and circumferential cracks were obtained experimentally and analytically. Fracture parameters such as crack opening angle (COA) were investigated by using elastic plastic analysis. Also the burst pressure far a T-type combination crack located near a tubesheet was considered to develop a length-based criterion. Because most of the axial, circumferential or combination cracks initiate in roll transition zone near the tubesheet.

Evaluation of Deformation Capacity of Slender Reinforced Concrete Walls with Thin Web (얇은 두께의 웨브를 갖는 세장한 벽체의 변형능력 평가)

  • Eom, Tae-Sung;Park, Hong-Gun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.185-186
    • /
    • 2009
  • In the present study, the deformation capacity of slender shear walls with thin web was studied. As reported by other researchers, web-crushing and rebar-fracture, developing by inelastic deformation after flexural yielding, were considered as the governing failure modes of walls. To address the effect of the longitudinal elongation on web-crushing and rebar-fracture, the longitudinal elongation was predicted by using truss model analysis. The failure criteria by web-crushing and rebar-fracture were defined as a function of the longitudinal elongation. The proposed method was applied to 17 shear wall specimens with boundary columns, and the prediction results were compared with the test results. The results showed that proposed method predicted the maximum deformations and failure modes of the wall specimens with reasonable precision.

  • PDF

Longitudinal Supraspinatus Tear Associated with Antegrade Humeral Intramedullary Nailing: A Case Report and Literature Review with Focus Placed on Nail Entry Point

  • Shon, Min Soo;Bang, Tae Jung;Yoo, Jae Chul
    • Clinics in Shoulder and Elbow
    • /
    • v.18 no.1
    • /
    • pp.47-51
    • /
    • 2015
  • Iatrogenic damage of the rotator cuff followed by postoperative shoulder function loss is a potential complication after antegrade intramedullary nailing (AIN) for a humeral fracture. The authors present a case of arthroscopic rotator cuff repair and subacromial decompression of a non-healed rotator cuff tendon (mainly supraspinatus) and secondary impingement syndrome caused either by the tear or a proud nail after AIN for a mid-shaft humeral fracture. At presentation, the patient complained of right shoulder pain and 'snapping', especially during forward elevation and abduction of the shoulder, of 4 years duration. Right shoulder pain started sometime after pain due to the humeral shaft fracture, operation had subsided, and persisted after nail removal. Arthroscopic findings showed a longitudinal rotator cuff tear at the nail entry point that had not healed and severe fibrous hypertrophy on the acromion underspace, which is a unique finding since most longitudinal splits of tendon fibers are more likely to heal than conventional rotator cuff tears detached from bone. The torn rotator cuff was repaired after debridement and placing side-to-side sutures. At his 34-month follow-up after rotator cuff repair, the patient showed complete recovery and had excellent clinical scores.

Effect of matrix on fatigue strength of carbon fiber composite materials (탄소섬유강화 복합재료의 피로강도에 미치는 모재의 영향)

  • 유승원
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.113-121
    • /
    • 1992
  • In this study, the variation of fatigue strength in CF/PEEK and CF/EPOXY, the matrix and interfacial strength of which differ from each other, has been studied from the viewpoint of microfracture behavior. The results obtained are as follows; According as the fatigue strength moves from the lower cycle range to the higher cycle range, that of CF/PEEK shows higher curve than that of CF/EPOXY does. In the early stage of fatigue life, the characteristic of fatigue crack in CF/PEEK is mainly the fracture of longitudinal fiber, while that in CF/EPOXY is the fracture of transverse fiber. The difference of fatigue strength in these materials can be explained by the fracture criteria of transverse fiber and longitudinal fiber.

  • PDF

Low Cycle Fatigue Model for Longitudinal Reinforcement (축방향철근의 저주파 피로 모델)

  • Ko, Seong-Hyun;Lee, Jae-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.273-282
    • /
    • 2010
  • The purposes of this study are to verify the existing model and to propose a rational model for the fracture characteristic of reinforcing steel which is manufactured in Korea being subjected to cyclic loading. This investigation deals with modeling of the low-cycle fatigue behavior for longitudinal reinforcement steel of reinforced concrete bridge substructure (piles and columns of piers). The proposed low-cycle model of longitudinal steel is modeled based on 81 experimental data. The non-linear analysis program was developed using the proposed low-cycle model. The non-linear analysis are applied to the 6 circular bridge column test results and the accuracy of proposed model is discussed.