• Title/Summary/Keyword: longitudinal bedform

Search Result 2, Processing Time 0.016 seconds

Bedform Distribution and Sand Transport Trend on a Subtidal Sand Ridge in a Macrotidal Bay, West Coast of Korea

  • Park, Soo-Chul;Yoo, Dong-geun
    • Journal of the korean society of oceanography
    • /
    • v.32 no.4
    • /
    • pp.181-190
    • /
    • 1997
  • A large subtidal sand ridge (Jungang Satoe) in Asan Bay, on the west coast of Korea, was studied in order to understand the morphology and sediment transport trend in a macrotidal setting, by means of analyzing sediment samples, current data, side-scan sonographs and seismic profiles. The ridge is about 15 km long and 2-5 km wide, with a relief of about 15 m. It is elongated in the flow direction of flood (SE) and ebb (NW) tidal currents, but asymmetrical in cross section. The western and southwestern side of the ridge is characterized by relatively gentle slopes averaging 0.4$^{\circ}$, whereas on the northeastern side, relatively steep slopes were mapped with 1.6$^{\circ}$ slope angles. Tidal currents associated with the ridge are very strong; maximum surface velo-cities range from neap values of 50 cm/s to spring values of 130 cm/s. The shear velocities during flood and ebb are strong enough to erode and transport sands on the ridge. Sand waves and megaripples (dunes) are the most common bedforms produced by the tidal currents, which show regional differences in shape and size on the ridge. The distribution pattern of these bedforms in-dicates that the flood tidal currents are dominant on the offshore (northwest) side of the ridge, whereas the onsho.e (southeast) side of the ridge is ebb-dominated. The sand transport path as inferred from bedform orientations is directed toward the ridge crest on the flanks, whereas on the crest, it is near-longitudinal to the ridge axis. The convergent, upslope movement of sands on the ridge flanks appears to be important in sand ridge building and maintenance. A significant ridge migration toward the northeast can be suspected on the basis of the ridge morphology, which may cause offshore hazards for navigation.

  • PDF

Numerical Simulations of Cellular Secondary Currents in Open-Channel Flows using Non-linear k-ε Model (비선형 k-ε 모형을 이용한 개수로 흐름에서의 격자형 이차흐름 구조 수치모의)

  • Kang, Hyeongsik;Choi, Sung-Uk;Park, Moonhyeong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.643-651
    • /
    • 2008
  • In the present paper, turbulent open-channel flows over longitudinal bedforms are numerically simulated. The Reynolds- averaged Navier-Stokes equations in curvilinear coordinates are solved with the non-linear $k-{\varepsilon}$ model by Speziale( 1987). First, the developed model is applied to rectangular open channel flows for purposes of model validation and parameter sensitivity studies. It is found that the parameters $C_D$ and $C_E$ are important to the intensity of secondary currents and the level of turbulent anisotropy, respectively. It is found that the non-linear $k-{\varepsilon}$ model can hardly reproduce the turbulence anisotropy near the free surface. However, the overall pattern of the secondary currents by the present model is seen to coincide with measured data. Then, numerical simulations of turbulent flows over longitudinal bedforms are performed, and the simulated results are compared with the experimental data in the literature. The simulated secondary currents clearly show upflows and downflows over the ridges and troughs, respectively. The numerical results of secondary currents, streamwise mean velocity, and turbulence structures compare favorably with the measured data. However, it is observed that the secondary currents towards the troughs were significantly weak compared with the measured data.