• 제목/요약/키워드: long-wave radiation

검색결과 97건 처리시간 0.018초

하절기 대구지역의 대기상태에 따른 장파복사 특징 분석 (Analysis of Long-wave Radiation Characteristics According to Atmospheric Conditions in Daegu Area During Summer)

  • 백창현;최동호;이부용;이인규
    • 한국태양에너지학회 논문집
    • /
    • 제38권5호
    • /
    • pp.1-9
    • /
    • 2018
  • The purpose of this study is to analyze the urban heat island ultimately by analyzing long-wave radiation which is the dominant factor of night minimum temperature formation. We observed during two months with four elements which is long and short wave radiation, temperature, relative humidity. And we analyzed the correlation between the four factors of long-wave radiation, temperature, cloud form, and cloud amount during the summer two months on the night time. Observations were carried out at two sites in Daegu and nearby. The results are as follows. (1) Long-wave radiation change per $1^{\circ}C$ in summer was larger than winter. (2) Long-wave radiation amount is affected by temperature change when the amount of cloud is small. (3) Low cloud was analyzed to have more influence on long-wave radiation than high cloud.

대구지역의 고도와 위치에 따른 하절기 장·단파복사 관측과 해석 (Observation and Analysis of the Long and Short Wave Radiation According to Different Altitudes and Locations in Daegu During Summer)

  • 최동호;이부용;오호엽
    • 한국태양에너지학회 논문집
    • /
    • 제32권4호
    • /
    • pp.71-81
    • /
    • 2012
  • This study for the understanding of the radiation environment according to the altitude in urban area in the summer observes the long and short wave radiation environment at the 4 urban areas with different height and the 1 suburban area. The results of this study are as follows. (1) When the altitude was high, the more short wave radiation was observed. (2) As the altitude was high, the temperature of atmosphere got lower. And because of that the downward long wave radiation was also lower. This general trend was confirmed through the study. (3) Through the observation of long wave radiation, the upper atmosphere of suburban area had the atmosphere characteristic which the temperature was rising and decreasing faster. Therefore, the difference radiation characteristics between the urban and suburban area were confirmed. (4) The result of the ratio of short wave radiation to long wave radiation(short wave radiation/long wave radiation) according to the altitude and location, the value was increased when the distance was far from the artificiality structure or a heat source, and the urban effect became smaller. Thus, it is expected that the ratio will be an evaluation index for evaluating urbanization effect.

동절기 대구지역의 기상요소와 장파복사 특성 분석 (Characteristics of Meteorological Elements and Long-wave Radiation in the Greater Daegu Area During Winter)

  • 백창현;최동호;이부용;이인규
    • 한국태양에너지학회 논문집
    • /
    • 제37권6호
    • /
    • pp.93-102
    • /
    • 2017
  • Interpretation of relevance between long-wave radiation and meteorological elements is recognized as an essential element for understanding the underlying mechanism of urban thermal environment formation. In this study, we analyzed relation between three elements : long-wave radiation, temperature, and lower-middle class cloudiness. The correlation was analyzed through field observations. The results are as follows. (1) Temperatures and long-wave radiation increased from January to March. This phenomenon has been confirmed in urban and suburban areas. (2) Long-wave radiations showed a tendency to increase clearly with increasing cloudiness.

도심부와 교외지역의 장·단파 복사와 상관도 분석 (I) -대구지역의 동·하절기 장·단파 복사 관측과 해석 - (Long and Short Wave Radiation and Correlation Analysis Between Downtown and Suburban Area(I) - Observation of the Long and Short Wave Radiation in Summer and Winter Season of Daegu -)

  • 최동호;이부용
    • 한국태양에너지학회 논문집
    • /
    • 제33권4호
    • /
    • pp.94-100
    • /
    • 2013
  • The objective of this study was to compare and analyze for seasonal long short-wave radiation characteristics between downtown area and suburban area in Daegu through field observations. This study was confirmed the regional and seasonal radiation environments and it can utilize as basic data for the analysis of the urban radiation environment and the effects of urbanization. The followings are main results from this study. 1) The downward shortwave radiation showed the similar value of the radiation generally in the downtown area and the suburban area of the city during the winter and summer season. but, long-wave radiation is always higher in downtown area. 2) In case of the long-wave radiation at two stations, we observed $230{\sim}270W/m^2$ in the winter season and $415{\sim}470W/m^2$ in summer season. As a result, we can see summer season is higher than winter about two times in long-wave radiation. 3) In case of short wave radiation, there is high correlation between two stations in winter season but very low correlation between two stations in summer season because of local atmosphere unstability and etc.

하계 그늘쉼터 유형별 장·단파복사 관측과 해석 (Observation and Analysis of Long and Short-wave Radiation According to Types of Summer Shelters)

  • 백창현;최동호;이부용;이인규
    • 한국태양에너지학회 논문집
    • /
    • 제39권6호
    • /
    • pp.127-135
    • /
    • 2019
  • In this study, we analyzed the relationship between five factors: long-wave radiation, short-wave radiation, cloudiness, SVF and summer shelters. In the previous study, we recognized the correlation between single building SVF and long-wave radiation. Furthermore, this study attempted to confirm the relationship at the summer shelter with high solar radiation blocking rate. The observations are as follows. ① Cooling in summer shelters was not the effect of temperature but the effect of radiation reduction due to short-wave radiation shielding. ② In the case of the canopy tent with low heat capacity, the long-wave radiation was observed to be 16.7% higher per hour than the comparison control point due to the increase in surface temperature. ③ The long-wave radiation increase rate was different according to SVF, but showed very similar pattern according to the material characteristics of the summer shelters. ④ Passive Cooling effect on the type of summer shelters are determined by the size of the total long and short-wave radiation at that point.

대구지역의 하절기 장.단파복사 관측 (Observation of Long and Short Wave Radiation During Summer Season in Daegu Area)

  • 오호엽;최동호;이부용
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.134-139
    • /
    • 2012
  • This study observed downward long and short-wave radiant environment with selecting 4 areas which have different height in downtown and 1 suburban area to figure out the characteristic of radiant environment in each altitude. The purpose of this study is to collect the preliminary data for interpreting urban thermal environment in summer season by analyzing thermal characteristic of atmosphere in the upper of downtown. The results of this study are as follows. 1) The higher altitude has the lower temperature, and temperature difference was more huge in day time than night time. 2) The short wave radiation according to altitude was higher as altitude was high. 3) Generally, the higher altitude has the lower air temperature, and also the higher altitude has the lower downward long wave radiation by the atmospheric radiation. 4) The ratio short wave radiation of long wave radiation was lower as altitude was high. And the urbanization effect was higher as the ratio was low.

  • PDF

하절기 도시의 장.단파 복사특성 관측 (Study on Characteristics of Radiation Environment in the Urban through the Field Observation in the Summer)

  • 정임수;최동호;이부용
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.105-110
    • /
    • 2011
  • The objective of this study is to analyze the characteristic of radiation environment in the urban and rural through the field observation in the summer. The radiation balance was compared through the measurement of the shortwave radiation and long-wave radiation in the urban, sub-urban, and rural. The following conclusion could be obtained from this research. (1) In the results of observation including the rain-day, it was found that the short wave radiance in the urban is lower about 10% than the rural. (2) The upper part of atmosphere layers in the urban area absorb much short wave radiation energies compared with the rural relatively. It can increase the temperature of the upper part of atmosphere layers and the emittance of long wave radiation. (3) The ratio of the downward short wave radiation to the downward long wave radiation was 1.24 for the urban, 1.28 for sub-urban and1.35 for rural. It can be estimated that the atmosphere condition of the rural is better than that of other areas.

  • PDF

하절기 도시의 지역별 장.단파복사 특성 분석과 해석 (Analysis of Radiative Characteristics at Urban Area by Observation in Summer Season)

  • 정임수;최동호;이부용
    • 한국태양에너지학회 논문집
    • /
    • 제31권3호
    • /
    • pp.133-144
    • /
    • 2011
  • The objective of this study is to analyze the characteristic of radiation environment in the urban and rural through the field observation in the summer. The radiation balance was compared through the measurement of the shortwave radiation and long-wave radiation in the urban, sub-urban, and rural. The following conclusion could be obtained from this research. (1)In the results of observation including the rain-day, it was found that the short wave radiance in the urban is lower about 10% than the rural. (2)The upper part of atmosphere layers in the urban are aabsorb much short wave radiation energies compared with the rural relatively. It can increase the temperature of the upper part of atmosphere layers and the emittance of long wave radiation. (3)The ratio of the downward short wave radiation to the downward long wave radiation was 1.24 for the urban, 1.28 for sub-urban and 1.35 for rural. It can be estimated that the atmosphere condition of the rural is better than that of other areas. (4)The net radiation of the rural was lower that of the urban. It was found that the energy in and outflow of the rural is easier than that of the urban. (5)The temperature variation for the long-wave radiation change of the rural showed more sensitive than that of the urban. It was came from the radiation characteristics of the surrounding environment and can be used as the important index to evaluate the thermal environment characteristic of urban.

하절기 단일건물 주변 외부공간의 장·단파 복사관측과 해석 (The Observation and Interpretation of Long and Short Wave Radiation of the External Environment Surrounding a Single Building in the Summer)

  • 백창현;최동호;이부용;이인규
    • 한국태양에너지학회 논문집
    • /
    • 제39권1호
    • /
    • pp.41-49
    • /
    • 2019
  • In this study, we analyzed the relationship between four elements: long-wave radiation, the direction of the building, BVR (Building View Ratio), and cloud amount. We examined how long-wave radiations surrounding a building influences the perception of heat in the summer. The results are as follows. (1) Long-wave radiation and BVR are highly correlated regardless of geographical direction. (2) Especially, during dawn in a clear day, areas with high BVR observed high levels of long-wave radiation. (3) This correlation suggests that higher BVR in urban areas will result in a greater number of tropical nights.

대구지역의 하절기 운량과 장·단파 복사 특성 분석 (Analysis of Cloudiness and Radiation Characteristics during Summer in the Greater Daegu Area)

  • 백창현;최동호;이부용;이인규
    • 한국태양에너지학회 논문집
    • /
    • 제37권4호
    • /
    • pp.13-22
    • /
    • 2017
  • In this study, long and short-wave radiations were observed in urban and suburban areas during the summer season, and frequency analysis was performed for each radiation intensity by a new analysis method. The following results were obtained. (1) Long-wave radiation values were found to be larger in the afternoon than in the morning, in both urban and suburban areas, unlike short-wave radiation values. (2) Short-wave radiation showed a right-skewed frequency distribution. In the high energy area greater than $900W/m^2$, the frequency was significantly higher in the suburbs than in the urban areas. (3) Long-wave radiation was in the range of $290{\sim}479W/m^2$, its frequency distribution resembled a normal distribution, and the frequency of 410, $420W/m^2$ was the highest.