• Title/Summary/Keyword: long-time aeration

Search Result 17, Processing Time 0.028 seconds

Nutrients removal on Oxic/Anoxic time ratio in 2-stage-intermittent-aeration reactor (2단 간헐 포기조의 포기/비포기 시간비에 따른 영양염류 제거특성)

  • Kim, Hong Tae;Sin, Seok U;O, Sang Hwa;Gwon, Seong Hyeon
    • Journal of Environmental Science International
    • /
    • v.13 no.7
    • /
    • pp.675-680
    • /
    • 2004
  • This study was conducted to remove organics and nutrients using 2 stage intermittent aeration reactor. First reactor, using suspended microbial growth in intermittent aeration instead of anaerobic reactor in the typical BNR process, used minimum carbon source to release P, and it was possible to reduce ammonia loading going to second reactor. In the second reactor, using moving media intermittent aeration, it was effective to reduce nitrate in non-aeration time by attached microorganisms having long retention time. In aeration time, nitrification and P uptake were taken place simultaneously. From the experiment, two major results were as follows. First, the removal of organics was more than 90%, and optimum aeration/non-aeration time ratio for organic removal was corresponded with aeration/non-aeration time ratio for nitrogen removal. Second, in the first reactor, optimum aeration/non-aeration time ratio was 15/75 (min.) because it was necessary to maintain 75 min. of non-aeration time to suppress of impediment of return nitrate and to lead release of phosphate. In the second reactor, optimum aeration/non-aeration time ratio was 45/90 (min.).

Improvement of effluent water quality by sludge aeration at the conventional drinking water treatment plant (정수장 슬러지 폭기를 통한 방류수 수질 개선)

  • Choi, Ilgyung;Shin, Changsoo;Beak, Inho;Lim, Jaecheol;Jeong, Chanwoo;Lee, Sungjin;Park, Jungwook
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.2
    • /
    • pp.249-255
    • /
    • 2014
  • So many drinking water treatment plants are under various difficulties by new reinforced effluent standards. Since the target turbidity, much higher than annual average, for designing sludge thickener have to be set to confront high turbidity season, the sludge at thickener should be put up for a long time during usual days. So the soluble manganese and chloroform may be formed under the anaerobic environment in the sludge thickener when the sludge retention time is longer with low turbidity. This phenomenon results in difficulties to keep regulatory level of the discharged effluent. For an effort to overcome the problems, a sludge aeration was successfully implemented into the thickening process. As a result, the final effluent quality and sludge volume were much improved; 41 % of manganese, 62 % of chloroform and 35 % of sludge volume. Additionally, effluent quality was improved ; 61 % of Manganese on aeration with pH control and we could make sure of stability effluent quality despite a long sludge retention time. We recommended the standard of installation sludge aeration equipment to nationally supply water treatment plant under effluent water quality problem ; Manganese, Chloroform, etc.

A Comparison of N and P Removal Characteristics by the Variation of Non-aeration Time in A2O SBBR (A2O SBBR에서 비포기 시간 배분에 따른 질소-인 제거 특성 비교)

  • Park, Young-Seek;Jeong, No-Sung;Kim, Dong-Seog
    • Journal of Environmental Science International
    • /
    • v.16 no.7
    • /
    • pp.813-821
    • /
    • 2007
  • Laboratory scale experiments were conducted to investigate the removal characteristics of nitrogen and phosphorus in two sequencing batch biofilm reactors (SBBRs). SBBR1 had a short first non-aeration period and SBBR2 had a long first non-aeration period. The removal characteristics of nitrogen and phosphorus in each SBBR were precisely observed according to the variation of influent TOC concentration, and the operation control parameters (pH, DO concentration, ORP) in each reactor were measured. In biological nitrogen removal, there was little difference between SBBR1 and SBBR2 and the nitrogen removal efficiencies were very low. The nitrogen and phosphorus removal characteristics in high influent TOC concentration were different from those in low TOC. Nitrogen removals by simultaneous nitrification/denitrification (SND) were occurred in both SBBR1 and SBBR2. The P removal in SBBR1 was superior to that in SBBR2. The second P release was observed in SBBR1 which had long second non-aeration period.

Effect of Bioaugmentation on Performance of Intermittently Aerated Sewage Treatment Plant (Bioaugmentation이 간헐폭기 오수처리장치의 운전효율에 미치는 영향)

  • Jeong, Byung-Gon
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.3
    • /
    • pp.233-239
    • /
    • 2008
  • In order to improve reactor performance of existing sewage treatment plants, the feasibility of enhancing reactor performance by bioaugmentation using EM as bioaugmentation agent and the effects of anoxic: oxic time ratio on reactor performance were investigated. Continuous and intermittent aeration modes were compared under the 6 hr of HRT. Three different types of intermittent aeration modes, that is, 15 min, of anoxic:45 min of oxic, 30 min of anoxic: 30 min of oxic, and 45 min of anoxic: 15 min oxic respectively were chosen as test modes to study the effects of anoxic : oxic time ratios on reactor performance. The optimum anoxic: oxic time ratio was 30 min:30 min when considering simultaneous removal of organic, nitrogen and phosphorus. When applying EM into a continuously aerated reactor under the varying dosing rates of 50-200 ppm, reactor performance in terms of organic and nitrogen removal efficiencies was not improved at all. Nitrogen removal efficiency was increase when the EM dosing rate was increased. However the degree of improvement was slight when the EM was injected above 100 ppm. However optimum phosphorus removal was found at the EM dosing of 200 ppm. Thus it was found that optimum injection concentration of EM is 200 ppm. It is apparent that putting EM into a sewage treatment plant significantly affects the T-N removal efficiency of the reactor by enhancing denitrification efficiency especially in operational conditions of relatively long anoxic periods. To achieve reciprocal condition in a reactor with intermittent aeration it is necessary to enhance the reactor performance by EM injection. In the case of modifying existing continuously aerated reactors into intermittent aerated reactors, it is obvious that operating costs of aeration would be reduced by reducing aeration time when compared with existing conventional sewage treatment plants.

The Estimating an Effect of Rapid Flux Increase to a Membrane in the Intermittent Aeration MBR Process Using Alum Treatment (응집제를 활용한 간헐포기 MBR공정에서 순간플럭스 증가가 분리막에 미치는 영향 평가)

  • Choi Song-Hyu;Cho Nam-un;Han Myong Su
    • Membrane Journal
    • /
    • v.15 no.1
    • /
    • pp.70-83
    • /
    • 2005
  • By supplying air intermittently in various mode, the effects of oxic/anoxic time ratio and air scrubbing in aeration condition on the membrane flux and permeability were investigated. When suction pump stops, vacuum pressure remains inside the suction pump. Therefore, the effect of remaining vacuum pressure in the suction pump on fouling of membrane was investigated. The effect of EPS (Extra cellular Polymeric Substance) which is generated due to the long SRT and high concentration of MLSS and the dose of coagulant on the membrane were also investigated. The suitable oxic/anoxic time ratio for the best removal efficiency of organic matter and nitrogenous matter was 40 minutes (Oxic) : 20 minutes (Anoxic). At this time ratio, alum was dosed into the aeration tank. The result of dosing alum was that the concentration of alum solution might affect nitrification and denitrification. To remove 1 mg/L of phosphorus in MBR process, it needs 0.75 mg/L of alum solution.

Comparison of physical cleaning applied to chemical backwashing of wastewater reuse membrane system (하수재이용 막여과 공정에서 약품 역세에서의 물리세정 영향 비교 평가)

  • Lee, Chang-Ha;Kim, Young-Hoon;Jeon, Min-Jung;Lee, Yong-Soo;Jang, Am;Kim Hyung-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.981-987
    • /
    • 2011
  • Biologically treated water contains a large quantity of organic matters and microorganisms which can cause various problems to membrane. The membrane fouling occurred by these reasons is hard to control by single physical cleaning. This study analyzes the efficiency of aeration with chemical backwashing and foulants removal during chemical backwashing. The cleaning efficiency improves when the chemical concentration is high and the contact time of chemical is long. Chemical backwashing with aeration shows exceptional cleaning efficiency which leads the physical cleaning is required during chemical backwashing since it forms flow inside the membrane submerged tank. From the foulants removal analysis, the particles such as turbidity and TOC removal rate increase when the aeration is applied. Dissolved matter of DOC and UV254 removal is dependent on higher chemical concentration. According to FTIR analysis, one of major foulants, the polysaccharide is controlled by the chemical backwashing with aeration condition.

The Aeration to Improve Manganese and Chloroform of Effluent at Sludge Thickener of the Conventional Water Treatment Plant (정수장 슬러지 폭기가 방류수 망간 및 클로로포름에 미치는 영향)

  • Choi, Ilgyung;Beak, Inho;Jeong, Chanwoo;Lee, Sungjin;Park, Jungwook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.2
    • /
    • pp.113-118
    • /
    • 2014
  • So many nationwide drinking water treatment plants are under much difficulties by new reinforced discharged effluent standards. Generally, the sludge at thickener should be retended for a long time during usual days. Sometime, the soluble manganese and chloroform may be formed under the anaerobic condition in the sludge thickener when the sludge retention time is longer with low turbidity. This phenomenon results in difficulties to keep regulatory level of the discharged effluent. It was necessary to improve the operation conditions and process itself in order to meet water quality standard recently reinforced. For an effort to overcome the problems, a sludge aeration was successfully implemented into the thickening process. Sludge aeration prevent particle oxidated Manganese eluting soluble de-oxidated Manganese, excrete formated Chloroform from effluent to air, and improve sludge settling through homogenized sludge particle. We aerated sludge at the conventional water treatment plant, measured Manganese and Chloroform of clarified water at upper sludge, and solid-fluid interface height of sludge in mass cylinder. As a result, contaminant's concentrations of the final effluent was much decreased : 41% of manganese, approximately 62% of chloroform and 35% of sludge volume, compared with non-aeration sludge.

The Fertilizing Effect of the Long-Time Aerated Animal Wastewater for the Paddy Rice (장기폭기시킨 축사뇨오수의 벼재배 시비효과)

  • 오인환
    • Journal of Animal Environmental Science
    • /
    • v.3 no.1
    • /
    • pp.35-42
    • /
    • 1997
  • The purpose of this study is to investigate the effect of the biologically treated animal wastewater as a liquid fertilizer in the paddy rice. The treated water has content of the ammonia nitrogen 24mg/I and nitrate 40 mg/I on an average in the first year. A trace of nitrite has been shown. The phosphate content was 92 mg/I on an average. The amount of yielded rice was 365kg/10a for test 1 (no fertilizer), 388dg/10a for test 2(chemical fertilizer), 526kg/10a for test 3 (treated water) respectively. The treated water showed 35% more in production than the chemical fertilizer. The treated water has content of the ammonia nitrogen 40mg/I and nitrate 67mg/I on an average in the second year. A trace of nitrite has been shown. The phosphate content was 57mg/I on an average. The amount of yielded rice was 402kg/10a for test 1, 505kg/10a for test 2, 607kg/10a for test 3 respectively. Yield of unhulled rice was 20% more in the plot of treated water than that of chemical fertilizer.

Treatment of Animal Wastewater with Absorbent Oxidation (축산폐수의 흡착산화 처리)

  • 오인환;박정현;이명규;전병태;김형화
    • Journal of Bio-Environment Control
    • /
    • v.3 no.2
    • /
    • pp.136-144
    • /
    • 1994
  • A long- time aeration method was developed for purification of animal wastewater. Under repeated aereations of 4 hours on and 4 hours off, the higher removal rates were obtained which were in average of 99%, 96%, 92% and 50% for BOD, SS, total nitrogen and phosporous, respectively. In detail, the measured BOD concentrations of the influent and effluent were 2,700ppm and 40ppm while the SS concentrations in the primary chamber and of the effluent were about 3,000 and 110 ppm, respectively. Zeolite and activated carbon, applied for removing the nitrogen and phosphorous, showed a good absorption, especially zeolite for NH$_4$-N and activated carbon for NO$_3$-N and PO$_4$-P. The treatment cost per head by this method amounts to 1,923 won and it comes to 1.6% in the whole production cost. Therefore, this method is economically available with the half cost of the conventional activated sludge process.

  • PDF

Nitritation of Anaerobic Digester Supernatant from Sludge Processing in MWTP (하수처리장 혐기성 소화조 상징액의 아질산화 반응 연구)

  • Gil, Kyung-Ik
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.540-545
    • /
    • 2006
  • The anaerobic digester supernatant (ADS) with high $NH_4-N$ concentration often results in a $NH_4-N$ overloading to the mainstream process of municipal wastewater treatment plant (MWTP). The nitrogen removal from the ADS is therefore important in order to achieve a stable mainstream process performance as well as to prevent $NH_4-N$ overloading due to ADS. Recently because of several advantages compared to the full nitrification, many works have shown interests in controlling the build-up of $NO_2-N$ in nitritation processes. The application of nitritation could save the aeration power compared to the full nitrification processes. In addition, the denitrification of $NO_2-N$ could reduce organic carbon requirements compared to the $NO_3-N$ denitrification. The purpose of this research was to find out the characteristics of the ADS nitritation and $NO_2-N$ accumulating factors from the laboratory reactor study. As a result based on the long-term laboratory experiment, it can be concluded that the degree of nitritation was closely related with the availability of alkalinity, free ammonia (FA), solid retention time (SRT) and solid concentration in the nitritation reactor.