• 제목/요약/키워드: long-term hydrologic impact assessment

검색결과 26건 처리시간 0.021초

GIS L-THIA를 이용한 도시화에 따른 유출과 비점원오염 영향 평가 (Assessing the impact of urbanization on runoff and non-point source pollution using the GIS L-THIA)

  • 윤라영;김동희;권혁현;신승철;손광익
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.1802-1806
    • /
    • 2006
  • It is important to consider the effects of land-use changes on surface runoff, stream flow, and groundwater recharge. Expansion of urban areas significantly impacts the environment in terms of ground water recharge, water pollution, and storm water drainage. Increase of impervious area due to urbanization leads to an increase in surface runoff volume, contributes to downstream flooding and a net loss in groundwater recharge. Assessment of the hydrologic impacts or urban land-use change traditionally includes models that evaluate how land use change alters peak runoff rates, and these results are then used in the design of drainage systems. Such methods however do not address the long-term hydrologic impacts of urban land use change and often do not consider how pollutants that wash off from different land uses affect water quality. L-THIA (Long-Term Hydrologic Impact Assessment) is an analysis tool that provides site-specific estimates of changes in runoff, recharge and non point source pollution resulting from past or proposed land-use changes. It gives long-term average annual runoff for a land use configuration, based on climate data for that area. In this study, the environmental and hydrological impact from the urbanized basin had been examined with GIS L-THIA in Korea.

  • PDF

Assessment of streamflow variation considering long-term land-use change in a watershed

  • Noh, Joonwoo;Kim, Yeonsu;Yu, Wansik;Yu, Jisoo
    • 농업과학연구
    • /
    • 제48권3호
    • /
    • pp.629-642
    • /
    • 2021
  • Land-use change has an important role in the hydrologic characteristics of watersheds because it alters various hydrologic components such as interception, infiltration, and evapotranspiration. For example, rapid urbanization in a watershed reduces infiltration rates and increases peak flow which lead to changes in the hydrologic responses. In this study, a physical hydrologic model the soil and water assessment tool (SWAT) was used to assess long-term continuous daily streamflow corresponding to land-use changes that occurred in the Naesungchun river watershed. For a 30-year model simulation, 3 different land-use maps of the 1990s, 2000s, and 2010s were used to identify the impacts of the land-use changes. Using SWAT-CUP (calibration and uncertainty program), an automated parameter calibration tool, 23 parameters were selected, optimized and compared with the daily streamflow data observed at the upstream, midstream and downstream locations of the watershed. The statistical indexes used for the model calibration and validation show that the model performance is improved at the downstream location of the Naesungchun river. The simulated streamflow in the mainstream considering land-use change increases up to -2 - 30 cm compared with the results simulated with the single land-use map. However, the difference was not significant in the tributaries with or without the impact of land-use change.

CAT을 이용한 저수지 수위 예측 (Prediction of Reservoir Water Level using CAT)

  • 장철희;김현준;김진택
    • 한국농공학회논문집
    • /
    • 제54권1호
    • /
    • pp.27-38
    • /
    • 2012
  • This study is to analyse the hydrological behavior of agricultural reservoir using CAT (Catchment hydrologic cycle Assessment Tool). The CAT is a water cycle analysis model in order to quantitatively assess the characteristics of the short/long-term changes in watershed. It supports the effective design of water cycle improvement facilities by supplementing the strengths and weaknesses of existing conceptual parameter-based lumped hydrologic models and physical parameter-based distributed hydrologic models. The CAT especially supports the analysis of runoff processes in paddy fields and reservoirs. To evaluate the impact of agricultural reservoir operation and irrigation water supply on long-term rainfall-runoff process, the CAT was applied to Idong experimental catchment, operated for research on the rural catchment characteristics and accumulated long term data by hydrological observation equipments since 2000. From the results of the main control points, Idong, Yongdeok and Misan reservoirs, the daily water levels of those points are consistent well with observed water levels, and the Nash-Sutcliffe model efficiencies were 0.32~0.89 (2001~2007) and correlation coefficients were 0.73~0.98.

Assessment of Hydrological Impact by Tracing Long-term Land Cover Changes Using Landsat TM Imageries

  • Kim, Seong J.;Park, Geun A.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.50-52
    • /
    • 2003
  • The purpose of this study is to evaluate the hydrological impact due to temporal land cover changes by gradual urbanization of a watershed. WMS HEC-1 was adopted, and DEM with 200m resolution and hydrologic soil group from 1:50,000 soil map were prepared. Land covers of 1986, 1990, 1994 and 1999 Landsat TM images were classified by maximum likelihood method. By applying the model, watershed average CN value was affected in the order of paddy, forest and urban/residential, respectively.

  • PDF

최적화 기법을 이용한 임하호유역 대표 CN값 추정 (Regionalization of CN values at Imha Watershed with SCE-UA)

  • 전지홍;김태동;최동혁
    • 한국농공학회논문집
    • /
    • 제53권5호
    • /
    • pp.9-16
    • /
    • 2011
  • Curve Numbers (CN) for the combination of land use and hydrologic soil group were regionalized at Imha Watershed using Long-term Hydrologic Impact Assessment (L-THIA) coupled with SCE-UA. The L-THIA was calibrated during 1991-2000 and validated during 2001-2007 using monthly observed direct runoff data. The Nash-Sutcliffe (NS) coefficients for calibration and validation were 0.91 and 0.93, respectively, and showed high model efficiency. Based on the criteria of model calibration, both calibration and validation represented 'very good' fit with observe data. The spatial distribution of direct surface runoff by L-THIA represented runoff from Thiessen pologen at Subi and Sukbo rain gage station much higher than other area due to the combination of poor hydrologic condition (hydrologic soil C and D group) and locality heavy rainfall. As a results of hydrologic condition and treatment for land use type based on calibrated CNs, forest is recommended to be hydrologically modelled dived into deciduous, coniferous, and mixed forest due to the hydrological difference. The CNs for forest and upland showed the poor hydrologic condition. The steep slope of forest and alpine agricultural field make high runoff rate which is the poor hydrologic condition because CN method can not consider field slope. L-THIA linded with SCE-UA could generated a regionalized CNs for land use type with minimized time and effort, and maximized model's accuracy.

직접유출량 모의를 위한 ArcGIS 기반의 모형 개발 및 개선 (Improvement and Application of the ArcGIS-based Model to Estimate Direct Runoff)

  • 김종건;임경재;;차상선;박찬기;박윤식
    • 한국농공학회논문집
    • /
    • 제60권6호
    • /
    • pp.65-71
    • /
    • 2018
  • The Long-Term Hydrologic Impact Assessment (L-THIA) model is a quick and straightforward analysis tool to estimate direct runoff and nonpoint source pollution. L-THIA was originally implemented as a spreadsheet application. GIS-based versions of L-THIA have been developed in ArcView 3 and upgraded to ArcGIS 9. However, a major upgrade was required for L-THIA to operate in the current version of ArcGIS and to provide more options in runoff and NPS estimation. An updated L-THIA interfaced with ArcGIS 10.0 and 10.1 has been developed in the study as an ArcGIS Desktop Tool. The model provides a user-friendly interface, easy access to the model parameters, and an automated watershed delineation process. The model allows use of precipitation data from multiple gauge locations for the watershed when a watershed is large enough to have more than one precipitation gauge station. The model estimated annual direct runoff well for our study area compared to separated direct runoff in the calibration and validation periods of ten and nine years. The ArcL-THIA, with a user-friendly interface and enhanced functions, is expected to be a decision support model requiring less effort for GIS processes or to be a useful educational hydrology model.

지역공동체를 위한 수문/수질 평가 의사결정지원시스템 (Hydrological Impect Evaluation Web-Based DSS for Local Community)

  • 최진용
    • 농촌계획
    • /
    • 제8권2호
    • /
    • pp.3-16
    • /
    • 2002
  • 의사결장지원시스템은 다양한 분야에 적용되어 왔으며, 그 중 수자원 및 수질 관련 분야에도 다각적으로 적용되어 왔다. 본 연구에서는 미 농무성의 자연자원보전국(NRCS, Natural Resources Conservation Service)에서 개발한 유출곡선법(Curve Number Method)과 EMC(Event Mean Concentration)을 사용한 L-THIA(Long-Term Hydrologic Impact Assessment) 수문/수질 모형을 강우자료 데이터베이스, 웹기반 지리정보시스템, 웹 사용자 편의 시스템과 통합한 수문/수질 L-THIA web 의사결정지원시스템을 개발하였다. L-THIA web은 도시계획가나 지방자치단체, 또는 지방의 공동체가 사용할 수 있도록 쉽고 단순한 사용자 편의 시스템을 제공하고 있으며, 미국의 50개 본토의 주와 카운티(County) 이름으로 기상자료와 수문토양분류(Hydrologic Soil Group)을 인터넷 지리정보시스템을 이용하여 제공하고 있다. 본 연구는 지방자치단체 및 지역공동체의 실무자를 사용자로 수문/수질 평가 및 관리를 위한 시스템으로 유용하게 활용될 수 있을 것으로 사료된다.

도시화에 따른 물순환 영향 평가 모형의 개발 및 적용(I) - 모형 개발 - (Development and Application of the Catchment Hydrologic Cycle Assessment Tool Considering Urbanization (I) - Model Development -)

  • 김현준;장철희;노성진
    • 한국수자원학회논문집
    • /
    • 제45권2호
    • /
    • pp.203-215
    • /
    • 2012
  • 본 연구의 목적은 도시개발의 영향을 평가하고 물순환 개선시설의 적절한 배치를 설계하기 위한 물순환 해석 모형을 개발하는 것이다. 개념적 매개변수를 사용하는 기존의 집중형 수문모형으로는 도시개발로 인한 토지이용 변화 등의 유역 특성 변화를 적절히 모의하는데 한계가 있으며, 최근 활발히 연구되고 있는 분포형 수문모형은 입력자료 구축 및 모형 구동에 많은 시간과 노력이 필요하여 다양한 도시설계 대안을 평가하기에는 적절하지 못하다. 유역 물순환 해석 모형(Catchment hydrologic cycle Analysis Tool, 이하 CAT)은 이러한 배경을 토대로 개발된 물리적 매개변수 기반의 링크-노드 방식의 물순환 정량화 모형이다. CAT은 기존 개념적 매개변수 기반의 집중형 수문모형과 물리적 매개변수 기반의 분포형 수문모형의 장단점을 최대한 보완하여, 도시유역 개발 전 후의 장 단기적인 물순환 변화 특성을 정량적으로 평가하고 물순환 개선시설의 효과적인 설계를 지원하기 위한 물순환 해석 모형이다. 개발된 모형의 평가를 위하여 설마천 유역을 대상으로 모의를 수행하였으며 출구점인 전적비교의 6개년(2002~2007) 동안의 시간별 하천 유출량 자료를 이용하여 모형의 보정(2002~2004)과 검정(2005~2007)을 실시한 결과, 보정과 검정기간의 Nash-Sutcliffe 모형효율계수는 각각 0.75와 0.89로 나타났다.

SCE-UA 최적화기법에 의한 낙동강 유역의 CN값 도출 (Regionalization of CN Parameters for Nakdong River Basin using SCE-UA Algorithm)

  • 전지홍;최동혁;김정진;김태동
    • 한국물환경학회지
    • /
    • 제25권2호
    • /
    • pp.245-255
    • /
    • 2009
  • CN values are changed by various surface condition, which is cover type or treatment, hydrologic condition, or percent impervious area, even the same combination of land use and hydrologic soil group. In this study, CN parameters were regionalized for Nakdong River Basin by Long-Term Hydrologic Impact Assessment (L-THIA) coupled with SCE-UA, which is one of the global optimization technique. Six watersheds were selected for calibration (optimization) and periodic validation and two watersheds for spatical validation as ungauged watershed within Nakdong River Basin. Nash-Sutcliffe (NS) values were 0.66~0.86 for calibration, 0.68~0.91 for validation, and 0.60 and 0.85 for ungauged watersheds, respectively. Urban area for the selected watersheds covered high impervious area with 85% for residential area and 92% for commercial/industrial/transportation area. Hydrologic characteristics for crop area was similar to row crop with contoured treatment and poor hydrologic condition. For the forested area, hydrologic characteristics could be clearly distinguished from the leaf types of plant. Deciduous, coniferous, and mixed forest showed low, moderate, and high runoff rates by representing wood with fair and poor hydrologic condition, and wood-grass combination with fair hydrologic condition, respectively. CN parameters from this study could be strongly recommended to be used to simulate runoff for ungauged watershed.

WMS HEC-1을 이용한 경안천 유역의 경년 수문변화 분석 (Assessment of hydrological impact by long term land cover change using WMS HEC-1 model in Gyueongan-cheon watershed)

  • 이준우;임혁진;이미선;김성준
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2001년도 학술발표회 발표논문집
    • /
    • pp.330-334
    • /
    • 2001
  • 1. The purpose of this study is to evaluate the hydrologic impact due to temporal land cover changes of Gyueongan-cheon watershed. 2. WMS(Watershed Modeling System) HEC-1 was adopted and the required data such as DEM(Digital Elevation Model), stream network, soil map were prepared, and land cover map was made by using Landsat TM data. 3. Due to the increase of urban area and paddy field, the runoff ratio increased 5.8% during the past decade.

  • PDF