• Title/Summary/Keyword: long-term forecast

Search Result 288, Processing Time 0.028 seconds

Application of MODIS Satellite Observation Data for Air Quality Forecast (MODIS 인공위성 관측 자료를 이용한 대기질 예측 응용)

  • Lee, Kwon-Ho;Lee, Dong-Ha;Kim, Young-Joon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.6
    • /
    • pp.851-862
    • /
    • 2006
  • Satellites have been valuable tool for global/regional scale atmospheric environment monitoring as well as emission source detection. In this study, we present the results of application of satellite remote sensing data for air quality forecast in Seoul metropolitan area. AOT (Aerosol Optical Thickness) data from TERRA/MODIS (Moderate Resolution Imaging Spectre-radiometer) satellite were compared to ground based $PM_{10}$ mass concentrations, and used to estimate the possibility of the aerosol forecasting in Seoul metropolitan area. Although correlation coefficient (${\sim}0.37$) between MODIS AOT products and surface $PM_{10}$ concentration data was relatively low, there was good correlation between MODIS AOT and surface PM concentration under certain atmospheric conditions, which supports the feasibility of using the high-resolution MODIS AOT for air quality forecasting. The MODIS AOT data with trajectory forecasts also can provide information on aerosol concentration trend. The success rate of the 24 hour aerosol concentration trend forecast result was about 75% in this study. Finally, application of satellite remote sensing data with ground-based air quality observations could provide promising results for air quality monitoring and more exact trend forecast methodology by high resolution satellite data and verification with long term measurement dataset.

An Empirical Analysis of Sino-Russia Foreign Trade Turnover Time Series: Based on EMD-LSTM Model

  • GUO, Jian;WU, Kai Kun;YE, Lyu;CHENG, Shi Chao;LIU, Wen Jing;YANG, Jing Ying
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.10
    • /
    • pp.159-168
    • /
    • 2022
  • The time series of foreign trade turnover is complex and variable and contains linear and nonlinear information. This paper proposes preprocessing the dataset by the EMD algorithm and combining the linear prediction advantage of the SARIMA model with the nonlinear prediction advantage of the EMD-LSTM model to construct the SARIMA-EMD-LSTM hybrid model by the weight assignment method. The forecast performance of the single models is compared with that of the hybrid models by using MAPE and RMSE metrics. Furthermore, it is confirmed that the weight assignment approach can benefit from the hybrid models. The results show that the SARIMA model can capture the fluctuation pattern of the time series, but it cannot effectively predict the sudden drop in foreign trade turnover caused by special reasons and has the lowest accuracy in long-term forecasting. The EMD-LSTM model successfully resolves the hysteresis phenomenon and has the highest forecast accuracy of all models, with a MAPE of 7.4304%. Therefore, it can be effectively used to forecast the Sino-Russia foreign trade turnover time series post-epidemic. Hybrid models cannot take advantage of SARIMA linear and LSTM nonlinear forecasting, so weight assignment is not the best method to construct hybrid models.

Improvement of Mid/Long-Term ESP Scheme Using Probabilistic Weather Forecasting (확률기상예보를 이용한 중장기 ESP기법 개선)

  • Kim, Joo-Cheol;Kim, Jeong-Kon;Lee, Sang-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.10
    • /
    • pp.843-851
    • /
    • 2011
  • In hydrology, it is appropriate to use probabilistic method for forecasting mid/long term streamflow due to the uncertainty of input data. Through this study, it is expanded mid/long term forecasting system more effectively adding priory process function based on PDF-ratio method to the RRFS-ESP system for Guem River Basin. For implementing this purpose, weight is estimated using probabilistic weather forecasting information from KMA. Based on these results, ESP probability is updated per scenario. Through the estimated result per method, the average forecast score using ESP method is higher than that of naive forecasting and it confirmed that ESP method results in appropriate score for RRFS-ESP system. It is also shown that the score of ESP method applying revised inflow scenario using probabilistic weather forecasting is higher than that of ESP method. As a results, it will be improved the accuracy of forecasting using probabilistic weather forecasting.

Prediction of the DO concentration using the machine learning algorithm: case study in Oncheoncheon, Republic of Korea

  • Lim, Heesung;An, Hyunuk;Choi, Eunhyuk;Kim, Yeonsu
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.1029-1037
    • /
    • 2020
  • The machine learning algorithm has been widely used in water-related fields such as water resources, water management, hydrology, atmospheric science, water quality, water level prediction, weather forecasting, water discharge prediction, water quality forecasting, etc. However, water quality prediction studies based on the machine learning algorithm are limited compared to other water-related applications because of the limited water quality data. Most of the previous water quality prediction studies have predicted monthly water quality, which is useful information but not enough from a practical aspect. In this study, we predicted the dissolved oxygen (DO) using recurrent neural network with long short-term memory model recurrent neural network long-short term memory (RNN-LSTM) algorithms with hourly- and daily-datasets. Bugok Bridge in Oncheoncheon, located in Busan, where the data was collected in real time, was selected as the target for the DO prediction. The 10-month (temperature, wind speed, and relative humidity) data were used as time prediction inputs, and the 5-year (temperature, wind speed, relative humidity, and rainfall) data were used as the daily forecast inputs. Missing data were filled by linear interpolation. The prediction model was coded based on TensorFlow, an open-source library developed by Google. The performance of the RNN-LSTM algorithm for the hourly- or daily-based water quality prediction was tested and analyzed. Research results showed that the hourly data for the water quality is useful for machine learning, and the RNN-LSTM algorithm has potential to be used for hourly- or daily-based water quality forecasting.

Estimation of Optimal Training Period for the Deep-Learning LSTM Model to Forecast CMIP5-based Streamflow (CMIP5 기반 하천유량 예측을 위한 딥러닝 LSTM 모형의 최적 학습기간 산정)

  • Chun, Beom-Seok;Lee, Tae-Hwa;Kim, Sang-Woo;Lim, Kyoung-Jae;Jung, Young-Hun;Do, Jong-Won;Shin, Yong-Chul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.1
    • /
    • pp.39-50
    • /
    • 2022
  • In this study, we suggested the optimal training period for predicting the streamflow using the LSTM (Long Short-Term Memory) model based on the deep learning and CMIP5 (The fifth phase of the Couple Model Intercomparison Project) future climate scenarios. To validate the model performance of LSTM, the Jinan-gun (Seongsan-ri) site was selected in this study. We comfirmed that the LSTM-based streamflow was highly comparable to the measurements during the calibration (2000 to 2002/2014 to 2015) and validation (2003 to 2005/2016 to 2017) periods. Additionally, we compared the LSTM-based streamflow to the SWAT-based output during the calibration (2000~2015) and validation (2016~2019) periods. The results supported that the LSTM model also performed well in simulating streamflow during the long-term period, although small uncertainties exist. Then the SWAT-based daily streamflow was forecasted using the CMIP5 climate scenario forcing data in 2011~2100. We tested and determined the optimal training period for the LSTM model by comparing the LSTM-/SWAT-based streamflow with various scenarios. Note that the SWAT-based streamflow values were assumed as the observation because of no measurements in future (2011~2100). Our results showed that the LSTM-based streamflow was similar to the SWAT-based streamflow when the training data over the 30 years were used. These findings indicated that training periods more than 30 years were required to obtain LSTM-based reliable streamflow forecasts using climate change scenarios.

Shanghai Containerised Freight Index Forecasting Based on Deep Learning Methods: Evidence from Chinese Futures Markets

  • Liang Chen;Jiankun Li;Rongyu Pei;Zhenqing Su;Ziyang Liu
    • East Asian Economic Review
    • /
    • v.28 no.3
    • /
    • pp.359-388
    • /
    • 2024
  • With the escalation of global trade, the Chinese commodity futures market has ascended to a pivotal role within the international shipping landscape. The Shanghai Containerized Freight Index (SCFI), a leading indicator of the shipping industry's health, is particularly sensitive to the vicissitudes of the Chinese commodity futures sector. Nevertheless, a significant research gap exists regarding the application of Chinese commodity futures prices as predictive tools for the SCFI. To address this gap, the present study employs a comprehensive dataset spanning daily observations from March 24, 2017, to May 27, 2022, encompassing a total of 29,308 data points. We have crafted an innovative deep learning model that synergistically combines Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN) architectures. The outcomes show that the CNN-LSTM model does a great job of finding the nonlinear dynamics in the SCFI dataset and accurately capturing its long-term temporal dependencies. The model can handle changes in random sample selection, data frequency, and structural shifts within the dataset. It achieved an impressive R2 of 96.6% and did better than the LSTM and CNN models that were used alone. This research underscores the predictive prowess of the Chinese futures market in influencing the Shipping Cost Index, deepening our understanding of the intricate relationship between the shipping industry and the financial sphere. Furthermore, it broadens the scope of machine learning applications in maritime transportation management, paving the way for SCFI forecasting research. The study's findings offer potent decision-support tools and risk management solutions for logistics enterprises, shipping corporations, and governmental entities.

Very Short- and Long-Term Prediction Method for Solar Power (초 장단기 통합 태양광 발전량 예측 기법)

  • Mun Seop Yun;Se Ryung Lim;Han Seung Jang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1143-1150
    • /
    • 2023
  • The global climate crisis and the implementation of low-carbon policies have led to a growing interest in renewable energy and a growing number of related industries. Among them, solar power is attracting attention as a representative eco-friendly energy that does not deplete and does not emit pollutants or greenhouse gases. As a result, the supplement of solar power facility is increasing all over the world. However, solar power is easily affected by the environment such as geography and weather, so accurate solar power forecast is important for stable operation and efficient management. However, it is very hard to predict the exact amount of solar power using statistical methods. In addition, the conventional prediction methods have focused on only short- or long-term prediction, which causes to take long time to obtain various prediction models with different prediction horizons. Therefore, this study utilizes a many-to-many structure of a recurrent neural network (RNN) to integrate short-term and long-term predictions of solar power generation. We compare various RNN-based very short- and long-term prediction methods for solar power in terms of MSE and R2 values.

-A Study on a Mathematical Model for Water Quality Prediction for Rivers- (하천(河川)의 수질예측(水質豫測)을 위한 수치모형(數値模型)에 관한 연구(硏究))

  • Kim, Sung-Soon;Lee, Yang-Kyoo;Kim, Gap-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.4
    • /
    • pp.73-86
    • /
    • 1995
  • The propriety of the numerical model application was examined on Paldang resevoir and its inflow tributaries located in the center of the Korean peninsula and the long term water quality forecast of the oxygen profile was carried out in this syduy. The input data of the model was the capacity of the reservoir, catchment area, percolation, diffusion rate, vertical mixing rate, dissolution rate from the bottom of the reservoir, outflow of the resevoir, water quality measurement and meteorology data of the drainage basin, and the output result was the annual estimation value of the dissolved oxygen concentration and the biochemical oxygen demand. The modeling method is based on the measured or calculated boundary condition dividing the water area into several blocks from the macorscopic aspect and considering the mass balance in these blocks. As the result of the water quality forecast, it was expected that the water quality in Northern Han River and Paldang reservoir would maintain the recent level, but that the water quality in the Southern Han River and its inflow tributary would worsen below the grade 4 of the life environmental standard from around 2000 owing to the decrease of DO concentration and the increase of BOD concentration.

  • PDF

Forecasting of Seasonal Inflow to Reservoir Using Multiple Linear Regression (다중선형회귀분석에 의한 계절별 저수지 유입량 예측)

  • Kang, Jaewon
    • Journal of Environmental Science International
    • /
    • v.22 no.8
    • /
    • pp.953-963
    • /
    • 2013
  • Reliable long-term streamflow forecasting is invaluable for water resource planning and management which allocates water supply according to the demand of water users. Forecasting of seasonal inflow to Andong dam is performed and assessed using statistical methods based on hydrometeorological data. Predictors which is used to forecast seasonal inflow to Andong dam are selected from southern oscillation index, sea surface temperature, and 500 hPa geopotential height data in northern hemisphere. Predictors are selected by the following procedure. Primary predictors sets are obtained, and then final predictors are determined from the sets. The primary predictor sets for each season are identified using cross correlation and mutual information. The final predictors are identified using partial cross correlation and partial mutual information. In each season, there are three selected predictors. The values are determined using bootstrapping technique considering a specific significance level for predictor selection. Seasonal inflow forecasting is performed by multiple linear regression analysis using the selected predictors for each season, and the results of forecast using cross validation are assessed. Multiple linear regression analysis is performed using SAS. The results of multiple linear regression analysis are assessed by mean squared error and mean absolute error. And contingency table is established and assessed by Heidke skill score. The assessment reveals that the forecasts by multiple linear regression analysis are better than the reference forecasts.

Forecasting Korean housing price index: application of the independent component analysis (부동산 매매지수와 전세지수 예측: 독립성분분석을 활용한 분석)

  • Pak, Ro Jin
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.2
    • /
    • pp.271-280
    • /
    • 2017
  • Real-estate values and related economics are often the first read newspaper category. We are concerned about the opinions of experts on the forecast for real estate prices. The Box-Jenkins ARIMA model is a commonly used statistical method to predict housing prices. In this article, we tried to predict housing prices by combining independent component analysis (ICA) in multivariate data analysis and the Box-Jenkins ARIMA model. The two independent components for both the selling price index and the long-term rental price index were extracted and used to predict the future values of both indices. In conclusion, it has been shown that the actual indices and the forecast indices using ICA are more comparable to the forecasts of the ARIMA model alone.