• Title/Summary/Keyword: long-term fertilization

Search Result 80, Processing Time 0.037 seconds

Change of Physical Properties on Long-Term Fertilization of Compost and Silicate in Paddy Soils (퇴비 및 규산질비료의 장기연용에 따른 토양 물리적특성 변화)

  • Park, Chang-Young;Choi, Jyung;Park, Ki-Do;Jeon, Weon-Tai;Kwon, Hye-Young;Kang, Ui-Gum
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.3
    • /
    • pp.175-181
    • /
    • 2000
  • This study was carried out to investigate the change of soil physical properties in long-term fertilized paddy soils with a Fine silty family of Typic Halpaqueps (Pyeongtaeg series). Treatments fertilized consisted of no fertilizer, compost, NPK, NPK+compost for thirty one years and of NPK+silicate for seventeen years. Water stable aggregate and degree of aggregate stability, which were higher in surface-soil than sub-soil, were high in order of NPK + compost > NPK + silicate > compost > NPK > no fertilizer plot. The ratio of aggregate larger than 0.5mm was high at compost and silicate plots but that smaller than 0.5mm was high at no fertilizer and NPK plots. And this aggregate stability showed negative correlation with soil hardness and bulk density ; positive correlation with sedimentation volume of soils in water. Sedimentation volume of soils in water was a little higher in surface-soil than sub-soil and in wet soil than dry soil, respectively. Pore space ratio and water retention capacity of soils were the most increased by the application of compost and not affected by silicate as in cases of liquid limit and plastic limit. Ignition loss of soils was high in order of NPK + compost > compost > NPK + silicate > NPK > no fertilizer plot. And field shattering ratio of soil mass smaller than 25.4mm was relatively high in NPK + compost, compost, and silicate plots.

  • PDF

Effects of Lime Applications on Chemical Properties of Soil and Rice Yields in Long-term Fertilization Experiment

  • Kim, Myung-Sook;Park, Seong-Jin;Lee, Chang-Hoon;Yun, Sun-Gang;Ko, Byong-Gu;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.4
    • /
    • pp.233-239
    • /
    • 2015
  • Monitoring of soil fertility and crop productivity in long-term application of fertilizers is necessary to use fertilizers efficiently. This study was conducted to investigate effects of continuous application of lime for rice cultivation from 1969 to 2014. The treatments were no lime treatments (N, NPK, NPKC, and NPKS) and lime treatments (N+L, NPK+L, NPKC+L, and NPKS+L). The application of lime in addition to N, NPK, and NPKC tended to increase pH, exchangeable Ca, and available $SiO_2$. The input of mean annual $1,170Mg\;ha^{-1}yr^{-1}$ of lime increased pH $0.0042yr^{-1}$, $0.0062yr^{-1}$, $0.0127yr^{-1}$, and $0.0041yr^{-1}$ in lime treatments (N+L, NPK+L, NPKS+L, and NPKC+L) compared with no treatments (N, NPK, NPKS, and NPKC), respectively. The mean annual Ca field balance varied from 169 to $561kg\;ha^{-1}yr^{-1}$in no treatments, from 871 to $1,263kg\;ha^{-1}yr^{-1}$ in lime treatments, indicating that Ca was accumulated in the soils. The mean annual Ca field balance in silicate fertilizer treatments (NPKS, NPKS+L) were higher than that of other treatments because silicate fertilizer included Ca component. Grain yield of rice had no significant differences between no lime treatments and lime treatments. Thus the application of lime led to changes in soil chemical properties but had no impact on the production of rice.

Effects of Indirect Wastewater Reuse on Water Quality and Soil Environment in Paddy Fields (간접하수재이용에 따른 논에서의 수질 및 토양환경 영향 분석)

  • Jeong, Han Seok;Park, Ji Hoon;Seong, Choung Hyun;Jang, Tae Il;Kang, Moon Seong;Park, Seung Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.91-104
    • /
    • 2013
  • The objectives of this study were to monitor and assess the environmental impacts of indirect wastewater reuse on water quality and soil in paddy fields. Yongin monitoring site (YI) irrigated from agricultural reservoir and Osan monitoring site (OS) irrigated with treated wastewater diluted with stream water were selected as control and treatment, respectively. Monitoring results for irrigation water quality showed a significant statistical difference in salinity, exchangeable cation and nutrients. Pond water quality showed a similar tendency with irrigation water except for the decreased difference in nutrients due to the fertilization impact. Soil chemical properties mainly influenced by fertilization activity such as T-N, T-P, and $P_2O_5$ were changed similarly in soil profiles of both monitoring sites, while the properties, EC, Ca, Mg, and Na, mainly effected by irrigation water quality showed a considerable change with time and soil depth in treatment plots. Heavy metal contents in paddy soil of both control and treatment did not exceed the soil contamination warning standards. This study could contribute to suggest the irrigation water quality standards and proper agricultural practices including fertilization for indirect wastewater reuse, although long-term monitoring is needed to get more scientific results.

Microbial composition and diversity of the long term application of organic material in upland soil

  • An, Nan-Hee;Park, Jong-Ho;Han, Eun-Jung;Hong, Sung-Jun;Kim, Yong-Ki;Jee, Hyeong-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.190-193
    • /
    • 2011
  • Organic and chemical fertilizer amendments are an important agricultural practice for increasing crop yields. In order to maintain the soil sustainability, it is important to monitor the effects of fertilizer applications on the shift of soil microorganism, which control the cycling of many nutrients in the soils. Here, culture-dependent and culture-independent approaches were used to analyze the soil microorganism and community structure under six fertilization treatments, including green manure, rice straw compost, rapeseed cake, pig mature compost, NPK +pig mature compost, NPK and control. Both organic and chemical fertilizers caused a shift of the cultural microorganism CFUs after treatments. Bacterial CFUs of the organic fertilization treatments were significantly higher than that of chemical fertilization treatments. The DGGE profiles of the bacterial communities of the samples showed that the green manure treatment was a distinct difference in bacterial community, with a greater complexity of the band pattern than other treatments. Cluster analyses based on the DGGE profile showed that rice straw compost and pig mature compost had a similar banding pattern and clustered together firstly. Rapeseed cake, NPK, NPK +pig manure compost and control clustered together in other sub-cluster and clearly distinguished from green manure.

Studies on Urban Green Open Space Establishment and Management of Ecological Approach -A case study of Ansan urban nature park in Seoul- (도시녹지의 생태학적 조성 및 관리방안에 관한 연구 -서울시 안산 도시자연공원을 중심으로-)

  • 오충현;이경재
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.21 no.1
    • /
    • pp.125-137
    • /
    • 1993
  • Ansan urban nature park is 197.8ha and located in Seodeamun-Gu of Seoul. Flora of Ansan consisted of 141 species, 76 genera, 40 families in woody plants. This study was conducted to analyze the natural environment and establish the park management plan with ecological approach. The result of this study is summarized as follows. 1. The short term plan shall be performed in six vegetation management zones; Robinia pseudoacacia community zone, Sorbus alnifolia community zone, Quercus acutissima community zone, Populus ${\times}$albagrandulosa community zone, Pinus densiflora community zone, and landscape planting zone. Pinus densiflora and landscape planting zones shall be managed artificially, the others managed with ecological approach. 2. The long term plan shall be performed in four vegetation management zones; Robinia pseudoacacia community zone, Quercus spp. community zone, Pinus densiflora community zone, and landscape planting zone. Pinus densiflora and landscape planting zones shall be managed artificially, the others managed with ecological approach. 3. Because soil of Ansan is acidified and the soil disturbed growth of plants, the improvement of soil is necessary. The fertilization shall be performed in three zones; evergreen confierous tree zone(ex. P. densiflora), Quercus spp. zone, and the other deciduous tree zone(ex. R. pseudoacacia).

  • PDF

Rice growth and Nutrient change in paddy soil with reclaimed sewage irrigation (오수처리수 관개방법에 따른 수도 생육과 토양내 영양물질 변화)

  • 윤춘경;황하선;우선호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.6
    • /
    • pp.154-162
    • /
    • 2001
  • This study was performed to examine the rice growth and nutrient change in paddy soil with reclaimed sewage irrigation. Total nitrogen and total phosphorus in the experimental system were analyzed before and after rice culture. The experiment lasted three consecutive years, and this paper presents results of the last year. Additional supply of nutrients to the rice culture by reclaimed sewage irrigation was significant and it increased the yield. Nutrient uptake by rice plant increased with more nutrient supplied, however. there was limit in plant uptake. Nutrient accumulation occurred in the soil and it was more apparent for the phosphorus where most of the remaining quantity was accumulated while substantial amount of nitrogen was lost during the growing season. This study suggested that additional nutrient supply by reclaimed sewage irrigation might be a supplemental benefit to the rice culture, and it can help the fertilization management. However, long term effects of continual reclaimed sewage irrigation should be assessed carefully including nutrient mass balance in the paddy rice culture system.

  • PDF

Changes of Chemical Characteristics of Soil Solution In Paddy Field from Fifty-Eight Years Fertilization Experiments

  • Kim, Myung Sook;Kim, Yoo Hak;Park, Seong Jin;Lee, Chang Hoon;Yun, Sun Gang;Sonn, Yeon Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.1
    • /
    • pp.22-29
    • /
    • 2015
  • The objectives of this study were to monitor the changes in soil solution nutrients and to evaluate their effect on rice uptake and yield. The changes of chemical characteristics of paddy soil solution were examined from the 58th fertilization experiment in which the continuous rice cropping experiment started in 1954 at the National Academy of Agricultural Science. The treatments were no fertilization (No fert.), inorganic fertilization (NPK), inorganic fertilizer plus rice straw compost (NPKC) and inorganic fertilizer plus silicate and lime fertilizer as a soil amendment (NPKCLS). The fertilizers were added at rates of standard fertilizer application rate in which nitrogen (N), phosphate ($P_2O_5$), potassium ($K_2O$), and sililcate ($SiO_2$) were applied at rates of $75{\sim}150kg\;ha^{-1}$, $70{\sim}86kg\;ha^{-1}$, $75{\sim}86kg\;ha^{-1}$, and $7.5Mg\;ha^{-1}$ respectively and lime was applied to neutralize soil acidity until 6.5. Average Electrical Conductivity (EC) of soil solution in NPKCLS and NPKC ranged from 1.16 to $2.00dS\;m^{-1}$. The $NH{_4}^+$ and $K^+$ levels in NPKCLS and NPKC were higher than that of the other treatments, due to high supply power of rice straw compost. The content of $H_3SiO{_4}^-$ was higher in NPKCLS because of silicate application. The dominant ions in soil solution were $Ca^{2+}$, $Mg^{2+}$ and $Na^+$ among cations and $HCO{_3}^-$, $SO{_4}^{2-}$, and $Cl^-$ among anions in all treatments. The continuous application of inorganic fertilizers plus rice straw compost (NPKC) and silicate fertilizer (NPKCLS) led to the changes of various chemical composition in soil solutions. Also, they had a significant impact on the improvement of rice inorganic uptake and grain yield. Especially, inorganic uptake by rice in NPKC and NPKCLS significantly increased than those in NPK plot; 14~46% for T-N, 32~36% for P, 43~57% for K, and 45~77% for Si. Therefore, the combined application of inorganic fertilizers with organic compost as a soil amendment is considered as the best fertilization practice in the continuous rice cropping for the improvement of crop productivity and soil fertility.

Grain Yield and Nitrogen Use Efficiency due to Long-Term Fertilization in Paddy Rice (동일비료(同一肥料) 장기운용(長期連用)에 따른 벼의 수량과 질소이용효율(窒素利用效率))

  • Yun, Eul-Soo;Choe, Zhin-Ryong;Jung, Yeun-Tae;Park, Kyeong-Bae;Lee, Jae-Saeng
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.2
    • /
    • pp.109-114
    • /
    • 1999
  • This study was carried out to obtain some information on the sustainability of paddy rice through the long-term variation of nitrogen use efficiency. The experiment was conducted during 30-year with the same amount of N, P, K and compost at Milyang, southern part of Korea. The results were as follows. Grain yield was increased significantly in the plots of compost incorporation only. However, yield productivity was decreased slightly in the plots with nil and unbalanced fertilization. The effects of rice straw compost on grain yield was not clear at the early crop years but was shown slightly at the late period of the experimental. The grain yield in the plots of compost incorporation at 30th crop year was come to about 80% of NPK plots. The amount of nitrogen uptaken by rice plant was the highest as $167kg\;ha^{-1}$ in NPK plus compost incorporation. Recovery efficiency)($RE_N$) was higher as 0.48~0.74 in compost incorporation plots than in other plots of balanced and unbalanced application. Average agronomic efficiency($AE-N$) and partial factor productivity from N fertilizer applied($PFP_N$) during 30 crop years in NPK plots was 12.8 kg/kg N and 37.7 kg/kg N, respectively, and difference of $AE-N$ and $PFP_N$ shown as indigenous soil nitrogen supply(INS) was higher as 28.4 kg/kg N in NPK + compost plot than NPK plot and was widened at the late period of experiment.

  • PDF

Influence of Long-term Fertilization on soil Enzymes Activity in Normal Paddy Soil (퇴비(堆肥) 및 비료(肥料) 장기연용(長期連用)이 토양내(土壤內) 효소활성(酵素活性)에 미치는 영향(影響))

  • Cho, Kang-Jin;Jung, Yeun-Tae;Choi, Jyung
    • Applied Biological Chemistry
    • /
    • v.32 no.2
    • /
    • pp.109-115
    • /
    • 1989
  • This study was aimed to find out the influence of long-term fertilization for 21 years on soil enzyme activities in the silty clay loam textured normal paddy soil. Total urease activity (TUA) and the microbial urease activity (MUA) were shown to be changed significantly, but the accumulated urease activity (AUA) was similar within trial plots. Especially the MUA of the plots annually applied N.P.K. fertilizers with compost and N.P.K. fertilizers with silicate fertilizer were the highest among plots. The total L-glutaminase activity (TGA) and the accumulated L-glutaminase activity(AGA) were changed significantly among trial plots, but the microbial L-glutaminase activity (MGA) was not. By the simple correlation analysis, it was shown that the TGA and the AGA correlated highly significant to available phosphorus available $SiO_2$ content and pH. Addition of the toluene to the incubation mixture did not markedly affect the activity of phosphatase, but the difference of phosphatase activity among plots was significant. By the simple correlation analysis, it was shown that the phosphatase activity ; correlated highly significant to pH, available $SiO_2$, available phosphorus and exchangeable calcium in soils.

  • PDF

The Effect of Organic Fertilizer According to the Duration and Amount of Soil Chemical Changes on Yield Components of Rice (유기질비료의 사용기간과 사용량에 따른 토양화학성변화와 벼의 수량구성요소에 미치는 영향)

  • Oh, Tae-Seok;Kim, Sung-Min;Kim, Chang-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.3
    • /
    • pp.209-215
    • /
    • 2014
  • The purpose of this study is identify chemical changes in yield components of soil using organic fertilizer for cultivating rice and establish reasonable methods of fertilization. In chemical change, comparing the control plot, the soil using organic fertilizer consistently for three years for cultivating rice showed an increase in pH and available phosphate in the experiment plots provided by the organic fertilizer, increase in spikelet number and 1000 grain weight in terms of yield components, and increase in yield in the three-year experiment plots. As for the quality of brown rice, the rate of head rice showed no difference when compared to that of the control plots. As for protein content, it was difficult to identify a statistical significance between the control plots and the experiment plots in 2009, but since 2010, the protein content of the experiment plots has been lower than that of the control plot, indicating that fertilization of organic fertilizer was effective in terms of rice quality. In conclusion, long-term use of organic fertilizer improved the chemical properties of soil and increased yield when compared to practical fertilization. Reasonable fertilization was identified to fertilize the nitrogen component of organic fertilizer to be a level of 12kg/10a.