• Title/Summary/Keyword: long-span slab

Search Result 77, Processing Time 0.026 seconds

Evaluation of minimum depth of soil cover and reinforcement of soil cover above soil-steel bridge (지중강판 구조물의 최소토피고 평가 및 상부토피 보강 방안)

  • Jung, Hyun-Sik;Lee, Jong-Ku;Cho, Sung-Min;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.425-432
    • /
    • 2004
  • In this paper, the results of the numerical analysis for the minimum depth of soil cover have been compared with those of currently suggested codes. Based on this comparison, the minimum depth of soil cover for the structures with long spans was suggested. Results showed that the actual depth of the soil cover required against soil failure over a circular and low-profile arch structure does not vary significantly with the size of the span and for the circular structure, the minimum depth of the soil cover was about 1.5m, and for the low-profile arch structures, below about 1.6m. And the previously established code in which the minimum depth of soil cover is defined to linearly increase with the increase in the span (CHBDC, 2001) was very conservative. For the structure with the relieving slab, the maximum live load thrust was reduced by about 36 percent and the maximum moment about 81 percent. The numerical analysis gave more conservative estimation of the live-load thrusts than the other design methods.

  • PDF

Evaluation of The Nonlinear Seismic Behavior of a Biaxial Hollow Slab (2방향 중공슬래브 구조시스템의 비선형 지진거동 평가)

  • Park, Yong-Koo;Kim, Hyun-Su;Ko, Hyun;Park, Hyun-Jae;Lee, Dong-Guen
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • Recently, there has been an increased interest in the noise isolation capacity of floor slabs, and thus an increase of slab thickness is required. In addition, long span floor systems are frequently used for efficient space use of building structures. In order to satisfy these requirements, a biaxial hollow slab system has been developed. To verify the structural capacity of a biaxial hollow slab system, safety verification against earthquake loads is essential. Therefore, the seismic behavior of a biaxial hollow slab system has been investigated using material nonlinear time history analyses. For efficient time history analyses, the equivalent plate element model previously proposed was used and the seismic capacity of the example structure having a biaxial hollow slab system has been evaluated using the nonlinear finite element model developed by the equivalent frame method. Based on analytical results, it has been shown that the seismic capacity of a biaxial hollow slab system is not worse than that of a flat plate slab system with the same thickness.

A study on the stability of pile bridge abutment on soft ground undergoing lateral flow (연약지반에서의 말뚝기초 교대의 측방유동 대책공법 적용에 관한 연구)

  • 오일록;채영수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.753-760
    • /
    • 2003
  • An existing studies concern about movement of pile bridge abutments. However, lateral displacement cause the serious failure of bridge by embankment under soft soil lateral flow A intention is obtained by analyzing the relationship between the safety factor of evaluation for lateral movements. Precise investigation and analysis are performed, in which the lateral movement of bridge abutments has occurred, and construct design strut-slab between bridge abutments in order to restraint lateral flow. As a result of this study, it was found that when evaluation for lateral movements is allowed to use Tschebotarioff's method and lateral flow decision number (I) and revision lateral flow decision number (M$_{I}$) by Korea Highway Corporation. Most important thing is decision of pressure of lateral flow at this case. Tschebotarioff's isoscales triangle method have no trouble analysis of pressure of lateral flow. Strut-slab method are nearly not have constructed case in this field site study that applied method. The method are between abutments combined steel strut and reinforced concrete slab. This method are effective restraint lateral flow but have little difficulty if long span bridge between abutments.s.

  • PDF

Experimental Study on the Cracking Loads of LB-DECKs with Varied Cross-Section Details (단면 상세가 변화된 LB-DECK의 균열하중에 대한 실험적 연구)

  • Youn, Seok-Goo;Cho, Gyu-Dae
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.657-665
    • /
    • 2011
  • LB-DECK, a precast concrete panel type, is a permanent concrete deck form used as a formwork for cast-in-place concrete pouring at bridge construction site. LB-DECK consists of 60 mm thick concrete slab and 125 mm height Lattice-girders partly embedded in the concrete slab. These decks have been applied to the bridges, which girder spacings are short enough to resist longitudinal cracking caused by construction loads. This paper presents experimental research work conducted to evaluate the cracking load of LB-DECKs designed for long span bridge decks. Twenty four non-composite beams and four composite beams are fabricated considering three design variables of thickness of concrete slab, height of lattice-girder, and diameter of top-bar. Static loads controlled by displacements are applied to test beams to obtain cracking and ultimate loads. Vertical displacements at the center of beams, strains of top-bar, crack propagation in concrete slab, and final failure modes are carefully monitored. The obtained cracking loads are compared to the analytical results obtained by elastic analyses. Long-term analyses using age-adjusted effective modulus method (AEMM) are also conducted to investigate the effects of concrete shrinkage on the cracking loads. Based on the test results, the tensile strength and the design details of LB-DECKs are discussed to prevent longitudinal cracking of long span bridge decks.

Unified equivalent frame method for post-tensioned flat plate slab structures

  • Choi, Seung-Ho;Lee, Deuck Hang;Oh, Jae-Yuel;Kim, Kang Su;Lee, Jae-Yeon;Lee, Kang Seok
    • Computers and Concrete
    • /
    • v.20 no.6
    • /
    • pp.663-670
    • /
    • 2017
  • The post-tensioned (PT) flat plate slab system is commonly used in practice, and this simple and fast construction method is also considered to be a very efficient method because it can provide excellent deflection and crack control performance under a service load condition and consequently can be advantageous when applying to long-span structures. However, a detailed design guideline for evaluating the lateral behavior of the PT flat plate slab system is not available in current design codes. Thus, typical design methods used for conventional reinforced concrete (RC) flat plate slab structures have inevitably been adopted in practice for the lateral load design of PT flat plate structures. In the authors' previous studies, the unified equivalent frame method (UEFM) was proposed, which considers the combined effect of gravity and lateral loads for the lateral behavior analysis of RC flat plate slab structures. The aim of this study is to extend the concept of the UEFM to the lateral analysis of PT flat plate slab structures. In addition, the stiffness reduction factors of torsional members on interior and exterior equivalent frames were newly introduced considering the effect of post-tensioning. Test results of various PT flat plate slab-column connection specimens were collected from literature, and compared to the analysis results estimated by the extended UEFM.

Behavior of Segments in Precast Prestressed Concrete Hollow Slab Bridges (프리캐스트 프리스트레스트 콘크리트 중공슬래브 교량의 분절거동)

  • Lee Ho Jun;Byun Kun Joo;Song Ha-Won;Kim Ho Jin;Kim Yun Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.43-46
    • /
    • 2005
  • Precast prestressed concrete hollow slab bridge is one of segmented bridge which can be long span, so that the structural behavior of joints of adjacent segment should be evaluated by the analysis as well as experiment. In this study, small scaled beam tests were carried out to determine joint shear key shape and restraint stress by prestressing. From the tests and the analysis, it was found that the joint key shape and the restraint stress affect the behavior of segments and the segments which has the height to the width of shear key as 1/3 possess maximum shear resistance.

  • PDF

Inelastic Behavior of Continuous Precast Composite Slabs (연속 프리캐스트 합성바닥판의 비탄성 거동)

  • Shim Chang-Su;Chung Young Soo;Min Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.447-450
    • /
    • 2005
  • A prefabricated composite hollow slab with perforated I-beams was suggested for the replacement of deteriorated concrete decks or the construction of new composite bridges with long-span slabs. Composite slabs with embedded I-beams have considerably higher stiffness and strength. For the application of prefabricated composite slabs to bridges, joints between slabs should satisfy the requirements of the ultimate limit state and the serviceability limit state. In this paper, three types of the detail for loop joints were selected and their structural performance in terms of strength and crack control was investigated through static tests on continuous composite slabs. A main parameter was the detail of the joint, such as an ordinary loop joint and loop joint with additional reinforcements. Even though there was no connection of the steel beams at the joints, the loop joints showed good performance in terms of strength. In terms of crack control, the loop joint with additional reinforcements showed better performance. In ultimate limit state, the continuous composite slabs showed good moment redistribution and ductility.

  • PDF

Behavior of Steel Plate Girder Using Slab Anchor (Slab Anchor를 사용한 판형교의 거동특성 연구)

  • Han, Sang-Yun;Han, Taek-Hee;Park, Nam-Hoi;Kang, Young-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.2 s.5
    • /
    • pp.105-113
    • /
    • 2002
  • Steel-Concrete composite girders have been used since early in the 1920's due to their advantages, which are lower weight, increasement of stiffness, slenderness, long span. However, in designing short to continuous composite bridges, negative moment occurs in mid-support and creates problems such as cracks in the concrete slab. Therefore, partially composite bridges are considered. In this time, slab-anchor is used in these. If the stiffness of shear connectors is insufficient, slip would happen at the contact surface. Partial interaction is the case that takes account of slips. In this paper, the evaluation of initial shear stiffness of slab-anchor in composite bridges is obtained from Push-Out specimen. Also, finite element analyses which uses the initial shear stiffness of slab-anchor got the experiment are carried out on simple composite girder and continuous composite girder. Futhermore, the ratio of composite according to various shear stiffness are investigated and the classification according to the ratio of composite is proposed.

Evaluation of Stress Reduction of Continuous Welded Rail of Sliding Slab Track from Track-Bridge Interaction Analysis (궤도-교량 상호작용 해석에 의한 슬라이딩 슬래브 궤도의 장대레일 응력 저감 효과 분석)

  • Lee, Kyoung Chan;Jang, Seung Yup;Jung, Dong-Ki;Byun, Hyung-Kyoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.1179-1189
    • /
    • 2015
  • Continuous welded rail on bridge structure experiences typically a large amount of additional longitudinal axial forces due to longitudinal track-bridge interaction under temperature and traction/braking load effect. In order to reduce the additional axial forces, special type of fastener, such as ZLR and RLR or rail expansion joint should be applied. Sliding slab track system is known to reduce the effect of track-bridge interaction by the application of a sliding layer between slab track and bridge structure. This study presents track-bridge interaction analysis results of the sliding slab track and compares them with conventional fixed slab track on bridges. The result shows that the sliding slab track can significantly reduce the additional axil forces of the continuously welded rail, and the difference is more significant for long and continuous span bridge.

Structural Performance and Usability of Void Slab Established in T-deck Plate (T형 데크 플레이트 중공형 슬래브의 구조성능 및 사용성능)

  • Hong, Eun-Ae;Chung, Lan;Paik, In-Kwan;Yun, Sung-Ho;Cho, Seung-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.677-684
    • /
    • 2012
  • In recent years, extension of life span of buildings is becoming an important issue in our society. To improve the life span of buildings, rhamen structure construction and long-spanned structures are advantageous. And in order to achieve this goal, structural elements of buildings must be light and slender. As an alternative method, general porous slabs are used frequently domestically and internationally. But the study on the porous slabs using T-deck plate and assembly of light weight precast construction is insufficient at present. In this study, flexural and fatigue tests were performed on six specimens to verify structural performance and serviceability. The main parameters of the specimens were light weight and T-deck plate construction possibility as well as slab thickness. The test results indicated that the strength of porous slabs using T-deck plate and assembly of light weight were much better than general RC slabs and porous slabs without T-deck plate. And stiffness was much better than that of other tested slabs.