• Title/Summary/Keyword: long-range transport of air pollutants

Search Result 66, Processing Time 0.042 seconds

Evaluation of Acid Rain through the Scavenging Theory and Application of Trajectory Model (세정이론을 통한 산성비의 평가와 발원지 추적)

  • Kim, Jeong-Soo;Kang, In-Goo;Chang, Sung-Kee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.8 no.2
    • /
    • pp.121-127
    • /
    • 1992
  • This study was carried out to investigate the features of air pollutants in rainwater and trace their transported trajectories from other countries. Chemical analysis data of rainwater and suspended particulates collected at Seoul, Kanghwa, and Taean for three years were used to evaluate the effects of long-range transport of air pollutants. Scavenging theory on washout and rainout effect during a rainy period was applied to estimate whether pollutants in the precipitation were long-range transported or not. On the other hand, precipitation weighted surface wind were evaluated to analyze the effect from local sources on atmospheric concentrations. As a result, contribution of air pollutants caused by anthropogenic sources in the precipitation which was identified to be long range transported was confirmed significantly high and trajectory of these pollutants was to be equivalent to 850mb isobar. Although concentration of acidifying components increased in the precipitation, neutralization by alkaline soil components such as $Ca^{2+}$ and $Mg^{2+}$ was conspicuous especially during Yellow-sand period.

  • PDF

Isentropic Analysis for the Long Range Trajectories of Yellow Sands (등엔트로피 궤적에 의한 황사의 장거리 이동 경로 분석)

  • 윤순창;박경선
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.7 no.2
    • /
    • pp.89-95
    • /
    • 1991
  • Yellow sands often occur in Korea during April and May each year, and they are believed to come from the Mongolian Gobi desert as the snow starts to melt in Spring time. Since the analysis of aerosol particulates can hardly distinguish the origin of particulates, the isentropic analysis of meteorological data is often used for the trajectories of the long range transport of yellows sand or air pollutants. The yellow sand case of April 9 $\sim$ 15, 1988, in Korea is analyzed for the identification of long range transport of yellow sands and their trajectories in East Asia, using isentropic analyses. We have tranformed the ECMWF grid data, analyzed in pressure coordinates, into the isentropic coordinates and then have traced the 286 K and 290 K air mass which started Gobi desert. The result shows the transport of yellow sands from the Gobi desert to the Korean peninsula.

  • PDF

The Effect of Local Air Pollutants in a Background Area: Measurements at Gosan in March 2000 (배경지역에서의 국지오염원의 영향: 2000년 3월 고산 측정결과)

  • Kim, N.K.;Kim, Y.P.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.6
    • /
    • pp.821-830
    • /
    • 2006
  • To identify the effect of local air pollutants on the $PM_{2.5}$ level at Gosan, $PM_{2.5}$ composition data, continuous $O_3,\;NO_x,\;SO_2,\;CO$ data, VOCs data, surface wind characteristics, and backward trajectory analysis results were analyzed for the measurements in March 2000 during which high concentrations of mass and anthropogenic ionic species were reported. It was found that the combination of surface wind and continuous gaseous species data can help to identify local effect in Jeju Island. Even in a high $PM_{2.5}$ level case mainly affected by long range transport from China, it was Identified that local effects were also significant for both the duration and pollutants' levels.

A Review on the Photochemical Oxidant Modeling as Applied to Air Quality Studies in Complex Terrain

  • Hwa-Woon Lee;Yoo
    • Journal of Environmental Science International
    • /
    • v.1 no.1
    • /
    • pp.19-33
    • /
    • 1992
  • The high oxidants, which occur the daily maximum concentrations in the afternoon, are transported into the other region via long range transport mechanisms or trapped within the shallow mixing boundary layer and then removed physically (deposition, transport by mountain wind, etc.) and chemically (reaction with local sources). Therefore, modeling formation of photochemical oxidants requires a complex description of both chemical and meteorolog ital processecs . In this study, as a part of air quality studies, we reviewed various aspects of photochemical modeling on the basis of currently available literature. The result of the review shows that the model is based on a set of coupled continuity equations describing advection, diffusion, transport, deposition, chemistry, emission. Also photochemical oxidant models require a large amount of input data concerned with all aspects of the ozone life cycle. First, emission inventories of hydrocarbon and nitrogen oxides, with appropriate spatial and temporal resolution. Second, chemical and photochemical data allowing the quantitative description of the formation of ozone and other photochemically-generated secondary pollutants. Third, dry deposition mechanisms particularly for ozone, PAN and hydrogen peroxide to account for their removal by absorption on the ground, crops, natural vegetation, man-made and water surfaces. Finally, meteorological data describing the transport of primary pollutants away from their sources and of secondary pollutants towards the sensitive receptors where environmental damage may occur. In order to improve our present study, shortcomings and limitation of existing models are pointed out and verification Process through observation is emphasized.

  • PDF

Air Monitoring of Persistent Organic Pollutants Using Passive Air Samplers (Passive Air Sampler를 이용한 잔류성 유기오염물질의 대기 모니터링)

  • Choi, Sung-Deuk;Chang, Yoon-Seok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.5
    • /
    • pp.481-494
    • /
    • 2005
  • The monitoring of persistent organic pollutants (POPs) in the atmosphere is a basis for the study of the fate of POPs in multimedia environments. Recently, passive air samplers (PASs) for POPs have been developed. In this paper, we deal with the principle, properties, and applications of the PAS. The principle of PAS, which has no pump, is physical sorption of semi-volatile organic chemicals on various sorbent materials. The PAS is much smaller than a high-volume air sampler and does not need electricity. These properties of the PAS make it possible to conduct various-scaled environmental monitoring all over the world including the Arctic and Antarctic, but the major disadvantage of PAS is its long sampling periods up to 2 years. To date, four kinds of PAS have been developed: polyurethane foam (PUF), polymer-coated glass (POG), semi-permeable membrane devices (SPMDs), and XAD resin-based PAS. Among them, SPMDs have been commercialized and are most widely used now. Meanwhile, the POPs emitted from China have a large potential to influence the levels and fates of POPs in Korea. Since characteristics of PAS are quite useful to monitor long-range transport of POPs, the use of PAS is highly recommended.

Time Series Observations of Atmospheric Radon Concentration in Seoul, Korea for an Analysis of Long-Range Transportation of Air Pollutants in the North-East Asia (동북아 오염물질 장거리이동 분석을 위한 서울시 대기 중 라돈농도의 시계열적 특성에 관한 연구)

  • Kim, Yoon-Shin;Lee, Cheol-Min;Kim, Ki-Youn;Jeon, Hyung-Jin;Kim, Jong-Cheol;Iida, Takao
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.4
    • /
    • pp.283-292
    • /
    • 2007
  • Atmospheric concentrations of radon had been continuously observed in Seoul, Korea since December 1999, as a tracer for long-range transport of air pollutants from China continent to Korea. In order to study radon as a tracer of long-range transport, it is important to know information about the atmospheric distribution and variation of radon concentration and its time variation. Atmospheric radon concentration are measured with electrostatic radon monitor(ERM) at Hanyang University located in Eastern area of Seoul. Air sample is taken into a vessel of ERM, and alpha particles emitted by radon daughters $Po^{218}$ are detected with ZnS(Ag) scintillation counter. Hourly mean concentrations and hourly alpha counts are recorded automatically. The major results obtained from time series observation of atmospheric radon were as follows : (1) The mean of airborne radon concentration in Seoul was found to be $7.62{\pm}4.11\;Bq/m^3$ during December $1999{\sim}January$ 2002. (2) The hourly variation of radon concentrations showed the highest in 8:00AM ($8.66{\pm}4.22\;Bq/m^3$) and the lowest in 3:00AM ($6.62{\pm}3.70\;Bq/m^3$) and 5:00AM ($6.62{\pm}3.39\;Bq/m^3$). (3) the seasonal variation of radon concentrations showed higher during winter-to-fall and lower during summer-to-spring. (4) Correlation between airborne radon concentration and the meteorological factors were -0.21 for temperature, 0.09 for humidity, -0.20 for wind speed, and 0.04 for pressure. (5) The mean difference of airborne radon concentration between Asian dust ($5.36{\pm}1.28\;Bq/m^3$) and non-Asian dust ($4.95{\pm}1.49\;Bq/m^3$) phenomenon was significant (p=0.08). We could identify time series distribution of radon concentration related meteorological factors. In addition, radon can be considered a good natural tracer of vertical dispersion and long-range transport.

A Commentary on Air Pollution Monitoring Programs in Korea

  • Ghim, Young-Sung;Kim, Jin-Young;Shim, Shang-Gyoo;Moon, Kill-Choo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E1
    • /
    • pp.21-28
    • /
    • 2002
  • Air quality issues in Korea rapidly changed at the beginning of the 1990s from primary to secondary pollutants starting in Seoul, the capital of Korea. The present frame of national air pollution monitoring networks was established between the end of the 1980s and the beginning of the 1990s. Background monitoring was initiated in the middle of the 1990s in response to increasing public concern about the long-range transport of air pollutants. Apart from the national monitoring, both routine and intensive measurements of fine particles have been made for research purposes since the middle of the 1990s at several background sites. However, air pollution monitoring in urban areas for other purposes was relatively scarce as national monitoring has been concentrated in these areas. Although ozone pollution has become a significant issue in major metropolitan areas every summer, only a little information on ozone precursors is available. During the past few years, the number of national monitoring stations has greatly increased. The government has a plan to gradually expand monitoring items as well as stations. It is anticipated that highly detailed information on both photochemical reactants and products will be available within the next several years. More emphasis will be placed on toxic substances based on risk assessment in monitoring for both research and policy making.