• Title/Summary/Keyword: long vertical borehole

Search Result 8, Processing Time 0.032 seconds

The Effect of Performance on Loading Impact of Emulsion Explosive in Long Vertical Borehole (에멀젼 폭약의 수직 장공 장약 시 낙하 충격에 의한 성능 영향)

  • Lee, Young-Ho;Lee, Seung-Chan;Lee, Eung-So
    • Explosives and Blasting
    • /
    • v.25 no.1
    • /
    • pp.45-52
    • /
    • 2007
  • When emulsion explosives(1kg/cartridge) are loaded into a long vertical borehole at open blasting site, they undergo an Impact corresponding to 117.6J of shock energy. After shocking. the crystallization of emulsion nay happen immediately. Furthermore, it nay cause a desensitization, arising from increase in the density of emulsion explosive by the breakage of sensitizer. In this paper, some experimental work was performed using PVC pipe equipment(50mm diameter and 12m lengths) to investigate the effects of loading impart of emulsion explosive. It is shown that detonation energy decreases up to 26% of the normal state value and this effect is less than 3% of the total performance of emulsion explosives in borehole blasting.

Borehole magnetics for the estimation of unknown foundation pile depth (시추공자력계를 이용한 기초파일 근입심도 추정)

  • Jo, Churl-Hyun;Chung, Hyun-Key;Cho, Kwang-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.2
    • /
    • pp.161-167
    • /
    • 1999
  • There is an increasing need for the estimation of foundation piles whose depths are unknown. Especially in repair and reinforcement works or in safety inspection and assessment to the big structures whose foundations are piles, the accurate information about the depth of foundation piles is one of the most important factors. A borehole magnetic tool has been developed and tested to meet this object. The fundamental base is that there usually exist many re-bars inside the foundation structure such as piles, and these re-bars are ferromagnetic materials which cause strong induced magnetic field comparable to the earth magnetic field. It utilizes flux-gate type magnetometer which measures 3-components of the magnetic field. Taking vertical derivatives of vertical component of the measured magnetic field, we can expect the error limit of estimating the depth of the pile end less than 20 cm in favorable condition. The maximum measurable distance is about 3 m to the pile from the borehole. The field data show that borehole magnetics is one of the most accurate, fast, and reliable methods for this object so far, as long as there is no magnetic materials such as deep located steel pipe or power cables close to the foundation piles.

  • PDF

A Study on the Vibration Reduction of Borehole by the Receive Distance (수진 거리에 따른 방진구의 진동 저감 연구)

  • Song, Jeong-Un;Kim, Seung-Kon;Hong, Woong-Ki
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.3
    • /
    • pp.169-176
    • /
    • 2014
  • The purpose of this study is to estimate the vibration reduction effect of the borehole which is controlled the vibration propagation in the ground. For this study, we measured the vibration velocity before and after the borehole installation. The results are as follows: The peak particle velocity(PPV) and peak vector sum(PVS) was reduced by the borehole. And also, the deviation of vibration velocity before and after the borehole installation showed large values in longitudinal and vertical component depending on the receive distance, and increased depending on the size of vibration energy. Finally, the vibration isolation efficiency was 25~35 percentage at 1.5m receive distance, and was 4~14 percentage at 3.0m receive distance. It was found that the vibration isolation efficiency was good in small vibration energy, but was not good at long receive distance.

Application textile-type geothermal heat exchanger for tunnel (텍스타일형 지중열교환기의 터널에서의 적용)

  • Lee, Chul-Ho;Lee, Kang-Ja;Gil, Hu-Jeong;Jeoung, Jae-Hyeung;Choi, Hang-Seok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.604-607
    • /
    • 2009
  • The geothermal energy have been developed as the pro-environmental and the substantial long-term energy. Recently energy foundations and other thermo-active ground structures have been developed to enhance the use of geothermal energy. In this research, a tunnel wall is focused as a source of geothermal energy. If the tunnel wall can be used for geothermal source, it can provide relatively lower cost because it is not necessary to make a deep borehole like in case of closed-loop vertical ground heat exchanger. For analyzing efficiency of heat exchanger in tunnel, laboratory tests and the numerical analyses are performed.

  • PDF

Dynamic Simulation of Ground Source Heat Pump with a Vertical U-tube Ground Heat Exchanger (수직형 U자 관 지중 열교환기를 갖는 지열원 열펌프의 동적 시뮬레이션)

  • Lee, Myung-Taek;Kim, Young-Il;Kang, Byung-Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.5
    • /
    • pp.372-378
    • /
    • 2007
  • GHX (Geothermal Heat Exchanger) design which determines the performance and initial cost is the most important factor in ground source heat pump system. Performance of GHX is strongly dependent on the thermal resistance of soil, grout and pipe. In general, GHX design is based on the static simulation program. In this study, dynamic simulation has been peformed to analyze the variation of system performance for various GHX parameters. Line-source theory has been applied to calculate the variation of ground temperature. The averaged weather data measured during a 10-year period $(1991\sim2000)$ in Seoul is used to calculate cooling and heating loads of a building with a floor area of $100m^2$. The simulation results indicate that thermal properties of borehole play significant effect on the overall performance. Change of grout thermal conductivity from 0.4 to $3.0W/(m^{\circ}C)$ increases COP of heating by 9.4% and cooling by 17%. Change of soil thermal conductivity from 1.5 to $4.0W/(m^{\circ}C)$ increases COP of heating by 13.3% and cooling by 4.4%. Change of GHX(length from 100 to 200 m increases COP of heating by 10.6% and cooling by 10.2%. To study long term performance, dynamic simulation has been conducted for a 20-year period and the result showed that soil temperature decreases by $1^{\circ}C$, heating COP decreases by 2.7% and cooling COP decreases by 1.4%.

Solid-liquid mixture flow characteristics in an inclined slim hole annulus (Slim hole 경사 환형관내 고-액 혼합유동 특성에 관한 연구)

  • Suh, Byung-Taek;Han, Sang-Mok;Woo, Nam-Sub;Kim, Young-Ju;Hwang, Young-Kyu
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1315-1320
    • /
    • 2008
  • An experimental study was carried out to study the solid-liquid mixture upward flow in a vertical and inclined annulus with rotating inner cylinder. Lift forces acting on a fluidized particle plays a central role in many importance applications, such as the removal of drill cuttings in horizontal drill holes, sand transport in fractured reservoirs, sediment transport and cleaning of particles from surfaces, etc. Field measurements have revealed that the pressure drop over a borehole during drilling of a slim oil well or a well with a long reach can depend significantly on the rotation speed of the drill pipe. An accurate prediction of the annular frictional pressure drop is therefore important for conditions where the annular clearance is small. Effect of annulus inclination and drill pipe rotation on the carrying capacity of drilling fluid, particle rising velocity, and pressure drop in the slim hole annulus have been measured for fully developed flows of water and of aqueous solutions.

  • PDF

Heating Performance Prediction of Low-depth Modular Ground Heat Exchanger based on Artificial Neural Network Model (인공신경망 모델을 활용한 저심도 모듈러 지중열교환기의 난방성능 예측에 관한 연구)

  • Oh, Jinhwan;Cho, Jeong-Heum;Bae, Sangmu;Chae, Hobyung;Nam, Yujin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.3
    • /
    • pp.1-6
    • /
    • 2022
  • Ground source heat pump (GSHP) system is highly efficient and environment-friendly and supplies heating, cooling and hot water to buildings. For an optimal design of the GSHP system, the ground thermal properties should be determined to estimate the heat exchange rate between ground and borehole heat exchangers (BHE) and the system performance during long-term operating periods. However, the process increases the initial cost and construction period, which causes the system to be hindered in distribution. On the other hand, much research has been applied to the artificial neural network (ANN) to solve problems based on data efficiently and stably. This research proposes the predictive performance model utilizing ANN considering local characteristics and weather data for the predictive performance model. The ANN model predicts the entering water temperature (EWT) from the GHEs to the heat pump for the modular GHEs, which were developed to reduce the cost and spatial disadvantages of the vertical-type GHEs. As a result, the temperature error between the data and predicted results was 3.52%. The proposed approach was validated to predict the system performance and EWT of the GSHP system.

A Simulation Study on the Analysis of Optimal Gas Storage System of the Depleted Gas Reservoir (고갈가스전에의 적정 가스저장시스템 분석을 위한 시뮬레이션 연구)

  • Lee, Youngsoo;Choi, Haewon;Lee, Jeonghwan;Han, Jeongmin;Ryou, Sangsoo;Roh, Jeongyong;Sung, Wonmo
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.515-522
    • /
    • 2007
  • In this study we have attempted to evaluate the technical feasibility of "BB-HY", which is depleted gas reservoir as a gas storage field, using the commercial compositional simulator "ECLIPSE 300". The "BB-HY" reservoir has an initial gas in place of 143 BCF which is relatively small, and its porosity and permeability are 19.5% and 50 md, respectively. For "BB-HY" gas reservoir, we have performed a feasibility analysis by investigating the cushion gas (or working gas), converting time to gas storage field, operation cycle, number of wells and the possible application of horizontal borehole as well. From the simulation results, it was found that the amount of cushion gas in "BB-HY" reservoir is required at least 50% of IGIP in order to operate stably as gas storage field. When one produces gas for longer time and hence the remaining gas in reservoir is less than optimal cushion gas, no technical problem was occurred as long as additional cushion gas is injected up to the optimal cushion gas. In the case of changing the operation cycle into producing gas for three months during winter season from producing five months, the result shows that either the cushion gas should be greater than 60% or the more number of wells should be drilled. Meanwhile, from the results of sensitivity analysis for the number of wells, in cases of operating six or eight vertical wells, the stable reproduction of the injected gas can not be possible in "BB-HY" gas reservoir since the remaining gas in reservoir is increased. Therefore, in "BB-HY" reservoir, at least ten vertical wells should be drilled for the stable operation of gas. This time, when three horizontal wells are additionally drilled including the existing two vertical wells, it was found that the operation of injection and reproduction of gas is relatively stable in "BB-HY" gas reservoir.