• Title/Summary/Keyword: long span girder

Search Result 170, Processing Time 0.027 seconds

Static and Dynamic Analysis for the Optimal Relation of Rise-Span-Girder Depth in Langer Arch Bridge (랭거아치교의 라이즈-경간-형고의 최적관계를 위한 정적 및 동적해석)

  • Hur, Eun Mi;Choi, Jee Hoon;Cho, Byoung Chil;Lee, Young Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.2
    • /
    • pp.319-327
    • /
    • 2002
  • Development of high-strength and light-weight structural steel as well as advancement in steel structure analysis enable construction of long span steel arch bridge. In an economic viewpoint, however, the design values of long span steel arch bridge needs to be optimized to reduce construction cost and achieve proper levels of structural safety. This study investigated the girder depth and the rise-span ratio for optimum design values, as well as the spectral analysis for protection against earthquake. The relationship between rise-span ratio and girder depth was derived based on the parametric studies of the basic span lengths of 60, 70, 80, 90, and 100m using a commercial Cis SAP2000. The equation relating the two variables was derived using linear regression.

Investigation on flutter mechanism of long-span bridges with 2d-3DOF method

  • Yang, Yongxin;Ge, Yaojun;Xiang, Haifan
    • Wind and Structures
    • /
    • v.10 no.5
    • /
    • pp.421-435
    • /
    • 2007
  • A two-dimensional flutter analysis method (2d-3DOF method) was developed to simultaneously investigate the relationship between oscillation parameters and aerodynamic derivatives of three degrees of freedom, and to clarify the coupling effects of different degrees of freedom in flutter instability. With this method, the flutter mechanism of two typical bridge deck sections, box girder section and two-isolated-girder section, were numerically investigated, and both differences and common ground in these two typical flutter phenomena are summarized. Then the flutter stabilization effect and its mechanism for long-span bridges with box girders by using central-slotting were studied by experimental investigation of aerodynamic stability and theoretical analysis of stabilizing mechanism. Possible explanation of new findings in the evaluation trend of critical wind speed through central vent width is finally presented.

Flutter suppression of long-span suspension bridge with truss girder

  • Wang, Kai;Liao, Haili;Li, Mingshui
    • Wind and Structures
    • /
    • v.23 no.5
    • /
    • pp.405-420
    • /
    • 2016
  • Section model wind tunnel test is currently the main technique to investigate the flutter performance of long-span bridges. Further study about applying the wind tunnel test results to the aerodynamic optimization is still needed. Systematical parameters and test principle of the bridge section model are determined by using three long-span steel truss suspension bridges. The flutter critical wind at different attack angles is obtained through section model flutter test. Under the most unfavorable working condition, tests to investigate the effects that upper central stabilized plate, lower central stabilized plate and horizontal stabilized plate have on the flutter performance of the main beam were conducted. According to the test results, the optimal aerodynamic measure was chosen to meet the requirements of the bridge wind resistance in consideration of safety, economy and aesthetics. At last the credibility of the results is confirmed by full bridge aerodynamic elastic model test. That the flutter reduced wind speed of long-span steel truss suspension bridges stays approximately between 4 to 5 is concluded as a reference for the investigation of the flutter performance of future similar steel truss girder suspension bridges.

Flutter performance of box girders with different wind fairings at large angles of attack

  • Tang, Haojun;Zhang, Hang;Mo, Wei;Li, Yongle
    • Wind and Structures
    • /
    • v.32 no.5
    • /
    • pp.509-520
    • /
    • 2021
  • The streamlined box is a common type of girders for long-span suspension bridges. Spanning deep canyons, long-span bridges are frequently attacked by strong winds with large angles of attack. In this situation, the flow field around the streamlined box changes significantly, leading to reduction of the flutter performance. The wind fairings have different effects on the flutter performance. Therefore, this study examines the flutter performance of box girders with different wind fairings at large angles of attack. Computational fluid dynamics (CFD) simulations were carried out to extract the flutter derivatives, and the critical flutter state of a long-span bridge was determined. Further comparisons of the wind fairings were investigated by a rapid method which is related to the input energy by the aerodynamic force. The results show that a reasonable type of wind fairings could improve the flutter performance of long-span bridges at large angles of attack. For the torsional flutter instability, the wind fairings weaken the adverse effect of the vortex attaching to the girder, and a sharper one could achieve a better result. According to the input energies on the girder with different wind fairings, the symmetrical wind fairings are more beneficial to the flutter performance

Parameter Analysis for Design of Concrete-Steel Hybrid Extradosed Bridge (콘크리트-강 복합 엑스트라도즈드교의 설계변수 분석)

  • Lho, Byeong Cheol;Lee, Yong Jin;Choi, Kyu Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.100-109
    • /
    • 2011
  • Recently, the concrete-steel hybrid extradosed bridge has been proposed as alternative bridge type at long span site. The hybrid extradosed bridge adopts light orthogonal deck girder instead of heavy concrete deck girder at the center span of bridge, and it enables to construct long-span bridge. And also, for this bridge type the decrease of self-weight of girder enables to reduce girder depth and side span length of extradosed bridge, so its type has more efficient structural behavior and makes it possible to perform optimal bridge design. Therefore, it is very important to set up the procedure and parameters of optimal design for concrete-steel hybrid extradosed bridge. In this study, the effects of design parameters (the variation of pylon height, bridge deck depth and orthogonal deck girder length) are discussed. And numerical analysis and sensitivity analysis are carried out according to these parameters. And design weight values about these parameters are quantitatively suggested to reflect characteristics of concrete-steel hybrid bridge.

Shrinkage and Creep Effects on Continuous Prestressed Concrete Girder Bridges (연속 프리스트레스트 콘크리트 거더교에서 건조수축과 크리프의 영향)

  • Cho, Sun-Kyu;Youn, Seok-Goo;Lee, Jong-Min;Choi, Yun-Wang;Chung, Jee-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.417-420
    • /
    • 2004
  • The Prestressed concrete girder bridges(PSC girder bridges), consisting of prestressed concrete girders and cast-in-place deck slabs, are sensitive to creep and shrinkage of concrete. Shrinkage and creep produce additional internal forces md deformations in PSC girder bridges. The long-term behavior of the PSC girder bridges depends on time-dependent properties of materials, amount of prestressing, methods and sequences of construction and age at loading. The purpose of this study is to predict the long-term behavior of PSC girder bridge. For this purpose, Computer program for Time-dependent analysis of PSC girder bridge has been developed. thereafter, Time-dependent analysis using developed computer program was carried out about 3-span continuous PSC girder bridges. Various construction timing sequences were used for parametric study.

  • PDF

Study of seismic performance and favorable structural system of suspension bridges

  • Zhang, Xin-Jun;Zhang, Chao
    • Structural Engineering and Mechanics
    • /
    • v.60 no.4
    • /
    • pp.595-614
    • /
    • 2016
  • By taking the Runyang Highway Bridge over the Yangtze River with 1490 m main span as example, structural response of the bridge under the horizontal and vertical seismic excitations is investigated by the response spectrum and time-history analysis of MIDAS/Civil software respectively, the seismic behavior and the influence of structural nonlinearity on the seismic response of the bridge are revealed. Considering the aspect of seismic performance, the suitability of employing the suspension bridge in super long-span bridges is investigated as compared to the cable-stayed bridge and cable-stayed-suspension hybrid bridge with the similar main span. Furthermore, the effects of structural parameters including the span arrangement, the cable sag to span ratio, the side to main span ratio, the girder height, the central buckle and the girder support system etc on the seismic performance of the bridge are investigated by the seismic response spectrum analysis, and the favorable earthquake-resistant structural system of suspension bridges is also discussed.

Investigation of seismic performance of super long-span cable-stayed bridges

  • Zhang, Xin-Jun;Zhao, Chen-Yang;Guo, Jian
    • Earthquakes and Structures
    • /
    • v.14 no.6
    • /
    • pp.493-503
    • /
    • 2018
  • With the further increase of span length, the cable-stayed bridge tends to be more slender, and becomes more susceptible to the seismic action. By taking a super long-span cable-stayed bridge with main span of 1400m as example, structural response of the bridge under the E1 horizontal and vertical seismic excitations is investigated numerically by the multimode seismic response spectrum and time-history analysis respectively, the seismic behavior and also the effect of structural nonlinearity on the seismic response of super long-span cable-stayed bridge are revealed. Furthermore, the effect of structural parameters including the girder depth and width, the tower structural style, the tower height-to-span ratio, the side-tomain span ratio, the auxiliary piers in side spans and the anchorage system of stay cables etc on the seismic performance of super long-span cable-stayed bridge is investigated numerically by the multimode seismic response spectrum analysis, and the favorable earthquake-resistant structural system of super long-span cable-stayed bridge is proposed.

Evaluation on Static Behavior of Long Span Prestressed Concrete Deck (장지간 프리스트레스트 콘크리트 바닥판의 정적 거동 평가)

  • Joo, Sanghoon;Chung, Chulhun;Lee, Hanjoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.969-977
    • /
    • 2016
  • In this paper, the static load test of long span PSC deck used in the twin steel plate girder bridge was conducted. To evaluate the structural behavior of long span deck, longitudinally sufficient length of deck is needed, but it is difficult to test the full-scale long span deck due to limit of transportation, setting and laboratory space. Therefore, this study proposed a method to apply longitudinal stiffness of the full-scale deck to the test specimen of longitudinally short length, and it was reinforced with the steel beam. The failure behavior and structural performance of the long span deck were evaluated by the proposed test specimen deck.

Aerodynamic stabilization of central stabilizers for box girder suspension bridges

  • Ge, Yaojun;Zou, Xiaojie;Yang, Yongxin
    • Wind and Structures
    • /
    • v.12 no.4
    • /
    • pp.285-298
    • /
    • 2009
  • For long-span suspension bridges with their intrinsic limit in flutter, some counter measures, for example, central stabilizers, should be adopted to improve aerodynamic stability to meet with the appropriate wind resistance requirements. The present paper introduces aerodynamic stabilization for long-span suspension bridges with box girders by using central stabilizers based on Xihoumen Bridge with the main span of 1650 m. The aerodynamic stabilization study covers experimental investigation of sectional model testing, comprehensive evaluation of three central stabilizers and theoretical analysis of stabilizing mechanism related to flutter derivatives, aerodynamic damping and degree participation.