• Title/Summary/Keyword: long range forecast

Search Result 43, Processing Time 0.026 seconds

Development of Integrated Outlier Analysis System for Construction Monitoring Data (건설 계측 데이터에 대한 통합 이상치 분석 시스템 개발)

  • Jeon, Jesung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.5
    • /
    • pp.5-11
    • /
    • 2020
  • Outliers detection and elimination included in field monitoring datum are essential for effective foundation of unusual movement, long and short range forecast of stability and future behavior to various structures. Integrated outlier analysis system for assessing long term time series data was developed in this study. Outlier analysis could be conducted in two step of primary analysis targeted at single dataset and second multi datasets analysis using synthesis value. Integrated outlier analysis system presents basic information for evaluating stability and predicting movement of structure combined with real-time safety management platform. Field application results showed increased correlation between synthesis value including similar sort of sensor showing constant trend and each single dataset. Various monitoring data in case of showing different trend can be used to analyse outlier through correlation-weighted value.

Classification of Heat Wave Events in Seoul Using Self-Organizing Map (자기조직화지도를 이용한 서울 폭염사례 분류 연구)

  • Back, Seung-Yoon;Kim, Sang-Wook;Jung, Myung-Il;Roh, Joon-Woo;Son, Seok-Woo
    • Journal of Climate Change Research
    • /
    • v.9 no.3
    • /
    • pp.209-221
    • /
    • 2018
  • The characteristics of heat wave events in Seoul are analyzed using weather station data from Korea Meteorological Administration (KMA) and European Centre for Medium-Range Weather Forecast (ECMWF) ERA-Interim reanalysis data from 1979 to 2016. Heat waves are defined as events in the upper 10th percentile of the daily maximum temperatures. The associated synoptic weather patterns are then classified into six clusters through Self-Organizing Map (SOM) analysis for sea-level pressure anomalies in East Asia. Cluster 1 shows an anti-cyclonic circulation and weak troughs in southeast and west of Korea, respectively. This synoptic pattern leads to southeasterly winds that advect warm and moist air to the Korean Peninsula. Both clusters 2 and 3 are associated with southerly winds formed by an anti-cyclonic circulation over the east of Korea and cyclonic circulation over the west of Korea. Cluster 4 shows a stagnant weather pattern with weak winds and strong insolation. Clusters 5 and 6 are associated with F?hn wind resulting from an anti-cyclonic circulation in the north of the Korean Peninsula. In terms of long-term variations, event frequencies of clusters 4 and 5 show increasing and decreasing trends, respectively. However, other clusters do not show any long-term trends, indicating that the mechanisms that drive heat wave events in Seoul have remained constant over the last four decades.

Climate Change and Coping with Vulnerability of Agricultural Productivity (기후변화와 농업생산의 전망과 대책)

  • 윤성호;임정남;이정택;심교문;황규홍
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.4
    • /
    • pp.220-237
    • /
    • 2001
  • Over the 20th century global temperature increase has been 0.6$^{\circ}C$. The globally averaged surface temperature is projected to increase by 1.4 to 5.8$^{\circ}C$ over the period 1990 to 2100. Nearly all land areas will have higher maximum temperature and minimum temperature, and fewer cold days and frost days. More intense precipitation events will take plate over many areas. Over most mid-latitude continental interiors will have increased summer continental drying and associated risk of drought. By 2100, if the annual surface temperature increase is 3.5$^{\circ}C$, we will have 15.9$^{\circ}C$ from 12.4$^{\circ}C$ at present. Also the annual precipitation will range 1,118-2,447 mm from 972-1,841 mm at present in Korea. Consequently the average crop periods for summer crops will be 250 days that prolonged 32 days than at present. In the case of gradual increase of global warming, an annual crop can be adapted to the changing climate through the selection of filial generations in breeding process. The perennial crops such as an apple should be shifted the chief producing place to northern or high latitude areas where below 13.5$^{\circ}C$ of the annual surface temperature. If global warming happens suddenly over the threshold atmospheric greenhouse gases, then all ecosystems will have tremendous disturbance. Agricultural land-use plan, which state that farmers decide what to plant, based on their climate-based advantages. Therefore, farmers will mitigate possible negative imparts associated with the climate change. The farmers will have application to use agricultural meteorological information system, and agricultural long-range weather forecast system for their agroecosystems management. The ideal types of crops under $CO_2$ increase and climate change conditions are considered that ecological characteristics need indispensable to accomplish the sustainable agriculture as the diversification of genetic resources from yield-oriented to biomass-oriented characteristics with higher potential of $CO_2$ absorption and primary production. In addition, a heat-and-cold tolerance, a pest resistance, an environmental adaptability, and production stability should be also incorporated collectively into integrated agroecosystem.

  • PDF

Development of Real-Time Forecasting System of Marine Environmental Information for Ship Routing (항해지원을 위한 해양환경정보 실시간 예보시스템 개발)

  • Hong Keyyong;Shin Seung-Ho;Song Museok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.1
    • /
    • pp.46-52
    • /
    • 2005
  • A marine environmental information system (MEIS) useful for optimal route planning of ships running in the ocean was developed. Utilizing the simulated marine environmental data produced by the European Center for Medium-Range Weather Forecasts based on global environmental data observed by satellites, the real-time forecast and long-term statistics of marine environments around planned and probable ship routes are provided. The MEIS consists of a land-based data acquisition and analysis system(MEIS-Center) and a onboard information display system(MEIS-Ship) for graphic description of marine information and optimal route planning of ships. Also, it uses of satellite communication system for data transfer. The marine environmental components of winds, waves, air pressures and storms are provided, in which winds are described by speed and direction and waves are expressed in terms of height, direction and period for both of wind waves and swells. The real-time information is characterized by 0.5° resolution, 10 day forecast in 6 hour interval and daily update. The statistic information of monthly average and maximum value expected for a return period is featured by 1.5° resolution and based on 15 year database. The MEIS-Ship include an editing tool for route simulation and the forecasting and statistic information on planned routes can be displayed in graph or table. The MEIS enables for navigators to design an optimal navigational route that minimizes probable risk and operational cost.

  • PDF

A LSTM Based Method for Photovoltaic Power Prediction in Peak Times Without Future Meteorological Information (미래 기상정보를 사용하지 않는 LSTM 기반의 피크시간 태양광 발전량 예측 기법)

  • Lee, Donghun;Kim, Kwanho
    • The Journal of Society for e-Business Studies
    • /
    • v.24 no.4
    • /
    • pp.119-133
    • /
    • 2019
  • Recently, the importance prediction of photovoltaic power (PV) is considered as an essential function for scheduling adjustments, deciding on storage size, and overall planning for stable operation of PV facility systems. In particular, since most of PV power is generated in peak time, PV power prediction in a peak time is required for the PV system operators that enable to maximize revenue and sustainable electricity quantity. Moreover, Prediction of the PV power output in peak time without meteorological information such as solar radiation, cloudiness, the temperature is considered a challenging problem because it has limitations that the PV power was predicted by using predicted uncertain meteorological information in a wide range of areas in previous studies. Therefore, this paper proposes the LSTM (Long-Short Term Memory) based the PV power prediction model only using the meteorological, seasonal, and the before the obtained PV power before peak time. In this paper, the experiment results based on the proposed model using the real-world data shows the superior performance, which showed a positive impact on improving the PV power in a peak time forecast performance targeted in this study.

Improvement in Regional-Scale Seasonal Prediction of Agro-Climatic Indices Based on Surface Air Temperature over the United States Using Empirical Quantile Mapping (경험적 분위사상법을 이용한 미국 지표 기온 기반 농업기후지수의 지역 규모 계절 예측성 개선)

  • Chan-Yeong, Song;Joong-Bae, Ahn;Kyung-Do, Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.201-217
    • /
    • 2022
  • The United States is one of the largest producers of major crops such as wheat, maize, and soybeans, and is a major exporter of these crops. Therefore, it is important to estimate the crop production of the country in advance based on reliable long- term weather forecast information for stable crops supply and demand in Korea. The purpose of this study is to improve the seasonal predictability of the agro-climatic indices over the United States by using regional-scale daily temperature. For long-term numerical weather prediction, a dynamical downscaling is performed using Weather Research and Forecasting (WRF) model, a regional climate model. As the initial and lateral boundary conditions of WRF, the global hourly prediction data obtained from the Pusan National University Coupled General Circulation Model (PNU CGCM) are used. The integration of WRF is performed for 22 years (2000-2021) for period from June to December of each year. The empirical quantile mapping, one of the bias correction methods, is applied to the timeseries of downscaled daily mean, minimum, and maximum temperature to correct the model biases. The uncorrected and corrected datasets are referred WRF_UC and WRF_C, respectively in this study. The daily minimum (maximum) temperature obtained from WRF_UC presents warm (cold) biases over most of the United States, which can be attributed to the underestimated the low (high) temperature range. The results show that WRF_C simulates closer to the observed temperature than WRF_UC, which lead to improve the long- term predictability of the temperature- based agro-climatic indices.

The Role of Fronts on the Vertical Transport of Atmospheric Pollutants II: Vertical transport experiment using MM5 (대기오염물질의 연직 수송에 미치는 전선의 역할 II: MM5를 이용한 3차원 연직 수송 실험)

  • Nam, Jae-Cheol;Hwang, Seung-On;Park, Soon-Ung
    • Atmosphere
    • /
    • v.14 no.4
    • /
    • pp.3-18
    • /
    • 2004
  • Neglecting the vertical transport from the surface, most of the previous studies on the long-range transport of pollutants have only considered the horizontal transport caused by the free atmosphere wind. I used a three dimensional numerical model, MM5 (The fifth generation Penn State Univ./NCAR Mesoscale Model) for the simulation of vertical transport of pollutants and investigated the mechanism of the vertical transport of atmospheric pollutants between planetary boundary layer(PBL) and free atmosphere by fronts. From the three dimensional simulation of MM5, the amount of pollutants transport from PBL to free atmosphere is 48% within 18 hour after the development of front, 55% within 24 hour, and 53% within 30 hour. The ratios of the vertically transported pollutant for different seasons are 62%, 60%, 54%, and 43% for spring, summer, fall, and winter, respectively. The most active areas for the vertical transport are the center of low pressure and the warm sector located east side of cold front, in which the strong upward motion slanted northward occurs. The horizontal advection of pollutants at the upper level is stronger than at the lower level simply because of the stronger wind speed. The simulation results shows the well known plum shape distribution of pollutants. The high concentration area is located in the center and north of the low pressure system, while the second highest concentration area is in the warm sector. It is shown that the most important mechanism for the vertical transport is vertical advection, while the vertical diffusion process plays an important role in the redistribution of pollutants in the PBL.

An Analysis on Effects of the Initial Condition and Emission on PM10 Forecasting with Data Assimilation (초기조건과 배출량이 자료동화를 사용하는 미세먼지 예보에 미치는 영향 분석)

  • Park, Yun-Seo;Jang, Im-suk;Cho, Seog-yeon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.5
    • /
    • pp.430-436
    • /
    • 2015
  • Numerical air quality forecasting suffers from the large uncertainties of input data including emissions, boundary conditions, earth surface properties. Data assimilation has been widely used in the field of weather forecasting as a way to reduce the forecasting errors stemming from the uncertainties of input data. The present study aims at evaluating the effect of input data on the air quality forecasting results in Korea when data assimilation was invoked to generate the initial concentrations. The forecasting time was set to 36 hour and the emissions and initial conditions were chosen as tested input parameters. The air quality forecast model for Korea consisting of WRF and CMAQ was implemented for the test and the chosen test period ranged from November $2^{nd}$ to December $1^{st}$ of 2014. Halving the emission in China reduces the forecasted peak value of $PM_{10}$ and $SO_2$ in Seoul as much as 30% and 35% respectively due to the transport from China for the no-data assimilation case. As data assimilation was applied, halving the emissions in China has a negligible effect on air pollutant concentrations including $PM_{10}$ and $SO_2$ in Seoul. The emissions in Korea still maintain an effect on the forecasted air pollutant concentrations even after the data assimilation is applied. These emission sensitivity tests along with the initial condition sensitivity tests demonstrated that initial concentrations generated by data assimilation using field observation may minimize propagation of errors due to emission uncertainties in China. And the initial concentrations in China is more important than those in Korea for long-range transported air pollutants such as $PM_{10}$ and $SO_2$. And accurate estimation of the emissions in Korea are still necessary for further improvement of air quality forecasting in Korea even after the data assimilation is applied.

The Study on the Quantitative Dust Index Using Geostationary Satellite (정지기상위성 자료를 이용한 정량적 황사지수 개발 연구)

  • Kim, Mee-Ja;Kim, Yoonjae;Sohn, Eun-Ha;Kim, Kum-Lan;Ahn, Myung-Hwan
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.267-277
    • /
    • 2008
  • The occurrence and strength of the Asian Dust over the Korea Peninsular have been increased by the expansion of the desert area. For the continuous monitoring of the Asian Dust event, the geostationary satellites provide useful information by detecting the outbreak of the event as well as the long-range transportation of dust. The Infrared Optical Depth Index (IODI) derived from the MTSAT-1R data, indicating a quantitative index of the dust intensity, has been produced in real-time at Korea Meteorological Administration (KMA) since spring of 2007 for the forecast of Asian dust. The data processing algorithm for IODI consists of mainly two steps. The first step is to detect dust area by using brightness temperature difference between two thermal window channels which are influenced with different extinction coefficients by dust. Here we use dynamic threshold values based on the change of surface temperature. In the second step, the IODI is calculated using the ratio between current IR1 brightness temperature and the maximum brightness temperature of the last 10 days which we assume the clear sky. Validation with AOD retrieved from MODIS shows a good agreement over the ocean. Comparison of IODI with the ground based PM10 observation network in Korea shows distinct characteristics depending on the altitude of dust layer estimated from the Lidar data. In the case that the altitude of dust layer is relatively high, the intensity of IODI is larger than that of PM10. On the other hand, when the altitude of dust layer is lower, IODI seems to be relatively small comparing with PM10 measurement.

A New Vessel Path Prediction Method Based on Anticipation of Acceleration of Vessel (가속도 예측 기반 새로운 선박 이동 경로 예측 방법)

  • Kim, Jonghee;Jung, Chanho;Kang, Dokeun;Lee, Chang Jin
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1176-1179
    • /
    • 2020
  • Vessel path prediction methods generally predict the latitude and longitude of a future location directly. However, in the case of direct prediction, errors could be large since the possible output range is too broad. In addition, error accumulation could occur since recurrent neural networks-based methods employ previous predicted data to forecast future data. In this paper, we propose a vessel path prediction method that does not directly predict the longitude and latitude. Instead, the proposed method predicts the acceleration of the vessel. Then the acceleration is employed to generate the velocity and direction, and the values decide the longitude and latitude of the future location. In the experiment, we show that the proposed method makes smaller errors than the direct prediction method, while both methods employ the same model.