• 제목/요약/키워드: long memory process

검색결과 163건 처리시간 0.019초

XGBoost를 활용한 리스크패리티 자산배분 모형에 관한 연구 (A Study on Risk Parity Asset Allocation Model with XGBoos)

  • 김영훈;최흥식;김선웅
    • 지능정보연구
    • /
    • 제26권1호
    • /
    • pp.135-149
    • /
    • 2020
  • 인공지능을 기반으로 한 다양한 연구들이 현대사회에 많은 변화를 불러일으키고 있다. 금융시장 역시 예외는 아니다. 로보어드바이저 개발이 활발하게 진행되고 있으며 전통적 방식의 단점을 보완하고 사람이 분석하기 어려운 부분을 대체하고 있다. 로보어드바이저는 인공지능 알고리즘으로 자동화된 투자 결정을 내려 다양한 자산배분 모형과 함께 활용되고 있다. 자산배분 모형 중 리스크패리티는 대표적인 위험 기반 자산배분 모형의 하나로 큰 자산을 운용하는 데 있어 안정성을 나타내고 현업에서 역시 널리 쓰이고 있다. 그리고 XGBoost 모형은 병렬화된 트리 부스팅 기법으로 제한된 메모리 환경에서도 수십억 가지의 예제로 확장이 가능할 뿐만 아니라 기존의 부스팅에 비해 학습속도가 매우 빨라 많은 분야에서 널리 활용되고 있다. 이에 본 연구에서 리스크패리티와 XGBoost를 장점을 결합한 모형을 제안하고자 한다. 기존에 널리 사용되는 최적화 자산배분 모형은 과거 데이터를 기반으로 투자 비중을 추정하기 때문에 과거와 실투자 기간 사이의 추정 오차가 발생하게 된다. 최적화 자산배분 모형은 추정 오차로 인해 포트폴리오 성과에서 악영향을 받게 된다. 본 연구는 XGBoost를 통해 실투자 기간의 변동성을 예측하여 최적화 자산배분 모형의 추정 오차를 줄여 모형의 안정성과 포트폴리오 성과를 개선하고자 한다. 본 연구에서 제시한 모형의 실증 검증을 위해 한국 주식시장의 10개 업종 지수 데이터를 활용하여 2003년부터 2019년까지 총 17년간 주가 자료를 활용하였으며 in-sample 1,000개, out-of-sample 20개씩 Moving-window 방식으로 예측 결과값을 누적하여 총 154회의 리밸런싱이 이루어진 백테스팅 결과를 도출하였다. 본 연구에서 제안한 자산배분 모형은 기계학습을 사용하지 않은 기존의 리스크패리티와 비교하였을 때 누적수익률 및 추정 오차에서 모두 개선된 성과를 보여주었다. 총 누적수익률은 45.748%로 리스크패리티 대비 약 5% 높은 결과를 보였고 추정오차 역시 10개 업종 중 9개에서 감소한 결과를 보였다. 실험 결과를 통해 최적화 자산배분 모형의 추정 오차를 감소시킴으로써 포트폴리오 성과를 개선하였다. 포트폴리오의 추정 오차를 줄이기 위해 모수 추정 방법에 관한 다양한 연구 사례들이 존재한다. 본 연구는 추정 오차를 줄이기 위한 새로운 추정방법으로 기계학습을 제시하여 최근 빠른 속도로 발전하는 금융시장에 맞는 진보된 인공지능형 자산배분 모형을 제시한 점에서 의의가 있다.

Open Source를 이용한 MicroPACS의 구성과 활용 (Application of MicroPACS Using the Open Source)

  • 유연욱;김용근;김영석;원우재;김태성;김석기
    • 핵의학기술
    • /
    • 제13권1호
    • /
    • pp.51-56
    • /
    • 2009
  • 목적 : Small-scalled PACS, Pc-based PACS로 표현되는 MicroPACS 시스템 구축에 대한 관심도가 급격하게 증가하고 있는 추세이다. MicroPACS 시스템은 PACS를 작은 규모에서 사용할 수 있도록 구성해놓은 것이고, 이 시스템을 구성하기 위해서는 DICOM viewer나 연결프로그램 등이 필요하다. 이것은 공개소스프로그램(Open Source Program)을 통해서 어느 누구나 쉽게 무료로 다운로드를 받을 수 있게 되어있다. 본 논문은 Open source program으로 MicroPACS를 직접 구성해보았고, 저장매체로서의 활용가치를 측정하기위하여 성능, 안정성 측면에서 기존의 광 저장매체(CD, DVDRAM)와 비교 분석하였다. 실험재료 및 방법 : 1. 소형 PACS를 구축하기 위해서 먼저 다음 기준에 맞는 DICOM Server Software를 검색한다. (1) 윈도우체제에서 사용가능할 것. (2) Free ware일 것. (3) PET/CT scanner와 호환되어야 할 것. (4) 사용하기 쉬워야 할 것. (5) 저장의 한계가 없어야 할 것. 2. (1) MicroPACS의 성능을 평가하기 위해 환자 1명의 Data ($^{18}F$-FDG Torso PET/CT)를 현재 Back-up장치로 쓰이는 광 저장매체(CD, DVD-RAM)와 MicroPACS에 저장하는데 소요되는 시간(Back up time)과 workstation으로 복구되기까지의 시간(Retrieval time)을 비교해 보았다. (2) PET/CT 검사를 시행했던 환자 1명의 병록번호와 검사 시행날짜를 핵의학과 직원 7명을 대상으로 알려주고 Data를 찾는데 소요되는 시간을 MicroPACS와 광 저장매체(CD, DVD-RAM)에서 각각 측정하여 비교하였다. 3. 기존의 백업장치로 쓰였던 CD들 중에서 2004년부터 2006년까지 500장을 무작위로 뽑아서 loading을 하였고 그중에서 얼마만큼의 에러가 발생하였는지를 측정하여 MicroPACS의 안정성을 비교평가하였다. 결과 : 1. Server와 DICOM viewer 기능을 갖춘 11개의 open source software 중에서 Conquest DICOM Server를 선택하였다. 2. (1) Backup과 Retrieval 시간 비교(단위 : 분)는 다음과 같다; DVD-RAM(5.13,2.26)/Conquest DICOM Server (1.49,1.19) by GE DSTE (p<0.001), CD (6.12,3.61)/Conquest (0.82,2.23) by GE DLS (p<0.001), CD (5.88,3.25)/Conquest (1.05,2.06) by SIEMENS. (2) CD ($156{\pm}46$초), DVD-RAM ($115{\pm}21$초) and Conquest DICOM Server ($13{\pm}6$초). 3. 1년간 MicroPACS에서의 데이터손실은 없었으며(0%), 500장의 CD 중에서 14개(2.8%)가 Loading하는데 실패하였다. 결론 : 현재 많은 병원에서 도입되고 있는 Full PACS를 open source software를 통하여 소규모의 PACS로 재현해 보았고, 그 결과 가능하다는 결론이 나왔다. 데이터 저장의 유용성을 평가한 결과에서 MicroPACS를 이용하는 것이 기존의 광저장매체를 사용하는 것보다 효율적이고 작업속도가 향상 된다는 것을 확인할 수 있다.

  • PDF

Bi-LSTM 기반의 한국어 감성사전 구축 방안 (KNU Korean Sentiment Lexicon: Bi-LSTM-based Method for Building a Korean Sentiment Lexicon)

  • 박상민;나철원;최민성;이다희;온병원
    • 지능정보연구
    • /
    • 제24권4호
    • /
    • pp.219-240
    • /
    • 2018
  • 감성사전은 감성 어휘에 대한 사전으로 감성 분석(Sentiment Analysis)을 위한 기초 자료로 활용된다. 이와 같은 감성사전을 구성하는 감성 어휘는 특정 도메인에 따라 감성의 종류나 정도가 달라질 수 있다. 예를 들면, '슬프다'라는 감성 어휘는 일반적으로 부정의 의미를 나타내지만 영화 도메인에 적용되었을 경우 부정의 의미를 나타내지 않는다. 그렇기 때문에 정확한 감성 분석을 수행하기 위해서는 특정 도메인에 알맞은 감성사전을 구축하는 것이 중요하다. 최근 특정 도메인에 알맞은 감성사전을 구축하기 위해 범용 감성 사전인 오픈한글, SentiWordNet 등을 활용한 연구가 진행되어 왔으나 오픈한글은 현재 서비스가 종료되어 활용이 불가능하며, SentiWordNet은 번역 간에 한국 감성 어휘들의 특징이 잘 반영되지 않는다는 문제점으로 인해 특정 도메인의 감성사전 구축을 위한 기초 자료로써 제약이 존재한다. 이 논문에서는 기존의 범용 감성사전의 문제점을 해결하기 위해 한국어 기반의 새로운 범용 감성사전을 구축하고 이를 KNU 한국어 감성사전이라 명명한다. KNU 한국어 감성사전은 표준국어대사전의 뜻풀이의 감성을 Bi-LSTM을 활용하여 89.45%의 정확도로 분류하였으며 긍정으로 분류된 뜻풀이에서는 긍정에 대한 감성 어휘를, 부정으로 분류된 뜻풀이에서는 부정에 대한 감성 어휘를 1-gram, 2-gram, 어구 그리고 문형 등 다양한 형태로 추출한다. 또한 다양한 외부 소스(SentiWordNet, SenticNet, 감정동사, 감성사전0603)를 활용하여 감성 어휘를 확장하였으며 온라인 텍스트 데이터에서 사용되는 신조어, 이모티콘에 대한 감성 어휘도 포함하고 있다. 이 논문에서 구축한 KNU 한국어 감성사전은 특정 도메인에 영향을 받지 않는 14,843개의 감성 어휘로 구성되어 있으며 특정 도메인에 대한 감성사전을 효율적이고 빠르게 구축하기 위한 기초 자료로 활용될 수 있다. 또한 딥러닝의 성능을 높이기 위한 입력 자질로써 활용될 수 있으며, 기본적인 감성 분석의 수행이나 기계 학습을 위한 대량의 학습 데이터 세트를 빠르게 구축에 활용될 수 있다.