• Title/Summary/Keyword: lognormal distribution model

Search Result 100, Processing Time 0.023 seconds

Fragility analysis of R/C frame buildings based on different types of hysteretic model

  • Borekci, Muzaffer;Kircil, Murat S.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.6
    • /
    • pp.795-812
    • /
    • 2011
  • Estimation of damage probability of buildings under a future earthquake is an essential issue to ensure the seismic reliability. Fragility curves are useful tools for showing the probability of structural damage due to earthquakes as a function of ground motion indices. The purpose of this study is to compare the damage probability of R/C buildings with low and high level of strength and ductility through fragility analysis. Two different types of sample buildings have been considered which represent the building types mentioned above. The first one was designed according to TEC-2007 and the latter was designed according to TEC-1975. The pushover curves of sample buildings were obtained via pushover analyses. Using 60 ground motion records, nonlinear time-history analyses of equivalent single degree of freedom systems were performed using bilinear hysteretic model and peak-oriented hysteretic model with stiffness - strength deterioration for each scaled elastic spectral displacement. The damage measure is maximum inter-story drift ratio and each performance level considered in this study has an assumed limit value of damage measure. Discrete damage probabilities were calculated using statistical methods for each considered performance level and elastic spectral displacement. Consequently, continuous fragility curves have been constructed based on the lognormal distribution assumption. Furthermore, the effect of hysteresis model parameters on the damage probability is investigated.

Changes of Fluvial Hydraulic Characteristics due to the Semi-Convering Work of Urban Stream (도시하천의 부분복개화에 의한 하천수리특성치의 변화)

  • Chang, In-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.1
    • /
    • pp.35-43
    • /
    • 1999
  • The purpose of this study is to derive the optimal methodology estimating the changes of fluvial hydraulic characteristics due to semi-covering work of urban stream. First, after collecting the data of the daily maximum rainfall of Chungju gaging station, the frequency analysis was carried out with frequency factor method, which includes normal, two-parameter and three-parameter lognormal, Gumbel-Chow, pearson type III, log-pearson type III distribution, and the goodness of fit test was executed by $x^2$-test and Kormogorov-Smimov test. Using the SCS method, the effective rainfall was estimated and the peak flow was calculated by the area-routing method. The HEC-2 model was applied to calculate water surface profiles for steady, gradually varied flow at Kyohyun river system in Chungju city. The model was applied to floodplain and riverbed management to evaluate flood way encroachments and to delineate flood hazard by riverside roadway construction. The model also was used to evaluate effects on water surface profiles of river improvement and levees as well as the presence of bridges or other hydraulic structures in the floodplain.

  • PDF

The Diagnosis for Life Data in Accelerated Life Testing (가족수명시험에서의 수명데이타에 관한 진단)

  • Bae, Suk-Joo;Kang, Chang-Wook
    • Journal of Korean Society for Quality Management
    • /
    • v.24 no.4
    • /
    • pp.29-43
    • /
    • 1996
  • This paper identifies these data by the data diagnosis in lognormal distribution and presents the method to obtain exact parameter estimates and confidence intervals of regression line. The life-stress relationship uses Arrhenius model and life data generate Class-H insulation complete data by simulation. Also, the method to estimate parameters uses least squares estimation and externally Studentized residuals can be used as test statistics for identifing outliers. And influential cases are identified by Cook's distance. This research is intended to obtain the useful information for the life of products and test method, to save time and costs, and to help optimum accelerated life test plans.

  • PDF

Reliability Analysis of Degradation Data Based on Accelerated Model -With Photointerrupter Used in Home VCR(Video Cassette Recorder)- (가속 모델에 기초한 열화 데이터의 신뢰성 해석 -가정용 영상 재생기에 사용되는 광센서를 중심으로-)

  • Kwon, Soo-Ho;Huh, Yang-Hyun;Lim, Tae-Jin
    • IE interfaces
    • /
    • v.12 no.3
    • /
    • pp.448-457
    • /
    • 1999
  • Accelerated degradation is concerned with models and data analyses for degradation of product performance over time at overstress and design conditions. Although there have been numerous studies with accelerated degradation theory in reliability, very few actually apply to parametric statistical analyses. This paper shows how to analyze degradation data, provides tests for how well the assumptions hold. Reel sensors, a sort of photointerrupters in home VCR, hive been tested, and least-square analyses are used to illustrate our approach. Tests for linearity of the performance-time relationship, dependence of the lognormal distribution, and the standard deviation on time are performed. The mean life of tested sensors is assessed at about 414,000 hours, and the Arrhenius activation energy of this reaction is concluded to be 0.39 eV as results.

  • PDF

Risk assessment of steel and steel-concrete composite 3D buildings considering sources of uncertainty

  • Lagaros, Nikos D.
    • Earthquakes and Structures
    • /
    • v.6 no.1
    • /
    • pp.19-43
    • /
    • 2014
  • A risk assessment framework for evaluating building structures is implemented in this study. This framework allows considering sources of uncertainty both on structural capacity and seismic demand. In particular randomness on seismic load, incident angle, material properties, floor mass and structural damping are considered; in addition the choice of fibre modelling versus plastic hinge model is also considered as a source of uncertainty. The main objective of this work is to study the contribution of these sources of uncertainty on the fragilities of steel and steel-reinforced concrete composite 3D building structures. The fragility curves are expressed in the form of a two-parameter lognormal distribution where vertical statistics in conjunction with metaheuristic optimization are implemented for calculating the two parameters.

Seismic Risk Analysis of Reinforced Concrete Bridge Piers using Local Damage (국부손상을 이용한 RC교각의 지진위험도 분석)

  • Lee, Dae-Hyoung;Kim, Hyun-Jun;Park, Chang-Ky;Chung, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.194-197
    • /
    • 2006
  • This study represents results of fragility curve development for 4-span continuous bridge. 2 type bridge model is chosen frame type and 2-roller 1-hinge type. To research the response of bridge under earthquake excitation, Monte Carlo simulation is performed to study nonlinear dynamic analysis. For nonlinear time history analysis a set of 150 synthetic time histories were generated. Fragility curves in this study are represented by lognormal distribution functions with two parameters and developed as a function of PGA. Five damage states were defined to express the condition of damage based on the actual experimental damage data of bridge column. As a result of this research, the value of damage probability corresponding to each damage state were determined and frame type bridge are favorable under seismic event.

  • PDF

A Failure-Censored Accelerated Life Test Sampling Plan with Both Life Specification Limits (수명의 양쪽규격을 고려한 정수중단 ALT 샘플링검사 계획)

  • 류근중;강창욱
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.21 no.45
    • /
    • pp.319-328
    • /
    • 1998
  • In this paper, the design of ALT(Accelerated Life Test) requires a sampling plan based on failure-censored(Type II censored) ALT with lognormal life distribution. Specially the environmental effect of products has been emphasized, so we considered the upper life limit as well as lower life limit in the ALT sampling plan. The optimal plan with a high stress and a low stress is used as test plan, and the total sample size for test and lot acceptability constant which minimize an asymptotic variance of maximum likelihood estimator of assumed model parameters and satisfy the given producer's risk and customer's risk are drawn out. These values can be acquired by means of the computer program that we coded for resolving the difficulty and complexity of calculation.

  • PDF

Reliability Assessment Criteria of Power Light Emitting Diodes for Lighting fittings (조명용 Power LED의 신뢰성평가기준)

  • Park, Chang-Kyu;Jeong, Hee-Suk;Jeong, Hai-Sung;Baik, Jai-Wook
    • Journal of Applied Reliability
    • /
    • v.9 no.3
    • /
    • pp.219-231
    • /
    • 2009
  • Power light emitting diodes(LED) for lighting fittings are so much environment-friendly, highly reliable and consume less energy that they are widely used at home and in industries such as electronics, telecommunications and industrial machineries. However, they are exposed to a very diverse environment and consists of complex components and, therefore needs careful approach to the enhancement and assessment of reliability of the item. In this article reliability assessment criteria for LED are established in terms of performance assessment test, reliability assessment test and accelerated test.

  • PDF

Estimation of sewer deterioration by Weibull distribution function (와이블 분포함수를 이용한 하수관로 노후도 추정)

  • Kang, Byongjun;Yoo, Soonyu;Park, Kyoohong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.4
    • /
    • pp.251-258
    • /
    • 2020
  • Sewer deterioration models are needed to forecast the remaining life expectancy of sewer networks by assessing their conditions. In this study, the serious defect (or condition state 3) occurrence probability, at which sewer rehabilitation program should be implemented, was evaluated using four probability distribution functions such as normal, lognormal, exponential, and Weibull distribution. A sample of 252 km of CCTV-inspected sewer pipe data in city Z was collected in the first place. Then the effective data (284 sewer sections of 8.15 km) with reliable information were extracted and classified into 3 groups considering the sub-catchment area, sewer material, and sewer pipe size. Anderson-Darling test was conducted to select the most fitted probability distribution of sewer defect occurrence as Weibull distribution. The shape parameters (β) and scale parameters (η) of Weibull distribution were estimated from the data set of 3 classified groups, including standard errors, 95% confidence intervals, and log-likelihood values. The plot of probability density function and cumulative distribution function were obtained using the estimated parameter values, which could be used to indicate the quantitative level of risk on occurrence of CS3. It was estimated that sewer data group 1, group 2, and group 3 has CS3 occurrence probability exceeding 50% at 13th-year, 11th-year, and 16th-year after the installation, respectively. For every data groups, the time exceeding the CS3 occurrence probability of 90% was also predicted to be 27th- to 30th-year after the installation.

Rapid seismic vulnerability assessment by new regression-based demand and collapse models for steel moment frames

  • Kia, M.;Banazadeh, M.;Bayat, M.
    • Earthquakes and Structures
    • /
    • v.14 no.3
    • /
    • pp.203-214
    • /
    • 2018
  • Predictive demand and collapse fragility functions are two essential components of the probabilistic seismic demand analysis that are commonly developed based on statistics with enormous, costly and time consuming data gathering. Although this approach might be justified for research purposes, it is not appealing for practical applications because of its computational cost. Thus, in this paper, Bayesian regression-based demand and collapse models are proposed to eliminate the need of time-consuming analyses. The demand model developed in the form of linear equation predicts overall maximum inter-story drift of the lowto mid-rise regular steel moment resisting frames (SMRFs), while the collapse model mathematically expressed by lognormal cumulative distribution function provides collapse occurrence probability for a given spectral acceleration at the fundamental period of the structure. Next, as an application, the proposed demand and collapse functions are implemented in a seismic fragility analysis to develop fragility and consequently seismic demand curves of three example buildings. The accuracy provided by utilization of the proposed models, with considering computation reduction, are compared with those directly obtained from Incremental Dynamic analysis, which is a computer-intensive procedure.