• Title/Summary/Keyword: location tracking simulation

Search Result 82, Processing Time 0.024 seconds

The Design and Implementation of a Multi-Session Processing Between RMA and RCP within a Vehicle Tracking System (차량 추적 시스템에서 RMA와 RCP 사이의 다중세션 설계 및 구현)

  • Jang, Chung Ryong;Lee, Yong Kwon;Lee, Dae Sik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.3
    • /
    • pp.127-141
    • /
    • 2014
  • A Vehicle Tracking System consists of GPS tracking device which fits into the vehicle and captures the GPS location information at regular intervals to a central GIS server, and GIS tracking server providing three major responsibilities: receiving data from the GPS tracking unit, securely storing it, and serving this information on demand of the user. GPS based tracking systems supporting a multi-session processing among RMA, RM, and RCP can make a quick response to various services including other vehicle information between RSU and OBU on demand of the user. In this paper we design RSU lower layers and RCP applications in OBU for a multisession processing simulation and test message processing transactions among RMA-RM and RM-RCP. Furthermore, we implement the additional functions of handling access commands simultaneously on multiple service resources which are appropriate for the experimental testing conditions. In order to make a multi-session processing test, it reads 30 resource data,0002/0001 ~ 0002/0030, in total and then occurs 30 session data transmissions simultaneously. We insert a sequence number field into a special header of dummy data as a corresponding response to check that the messages are received correctly. Thus, we find that GIS service system with a multi-session processing is able to provide additional 30 services in a same speed of screen presentation loading while identifying the number of session processing of Web GIS service, the number of OBU service, and the speed of screen presentation loading by comparing a single session and a multi-session of GIS service system.

Telematics Specific Horizontal Distance Traveled by a Falling Car

  • Shin, Seong-Yoon;Jang, Dai-Hyun;Lee, Hyun-Chang
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.2
    • /
    • pp.181-186
    • /
    • 2012
  • Telematics services include automatic location tracking for emergency rescue, which is available for use in case of a car accident due to falling off roadways. This paper presents a simulation study on how far a car will fall before it hits the ground if it drops off of a roadway due to an accident or a natural disaster. The greatest horizontal distance the falling car can travel is presented in this paper, based on the assumption that air resistance as well as the direction and degree of acceleration due to gravity is negligible. This paper also presents the depth of the dent caused by the car sinking into the ground, the time it took for the car to fall free, and the velocity at which it travelled and horizontal distance it traveled. In this paper, the damage done to cars that crash into the ground and the dangers thereof are graphically represented.

Horizontal Distance Traveled by a Falling Car (추락하는 자동차가 수평으로 날아간 거리)

  • Shin, Seong-Yoon;Shin, Kwang-Seong;Lee, Hyun-Chang;Rhee, Yang-Won
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.06a
    • /
    • pp.51-54
    • /
    • 2011
  • Telematics services include automatic location tracking for emergency rescue, which is available for use in case of a car accident due to falling off roadways. This paper presents a simulation study on how far a car will fall before it hits the ground, if dropped off the roadway due to an accident or a natural disaster. The greatest distance the falling car can travel is presented in this paper, on the assumption that air resistance as well as the direction and size of the acceleration due to gravity is negligible.

  • PDF

The Design and Implementation of a Method for Identifying RCP in the Vehicle Tracking System (차량 추적 시스템에서 RCP를 식별하기 위한 방법 설계 및 구현)

  • Lee, Yongkwon;Jang, Chungryong;Lee, Daesik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.2
    • /
    • pp.15-24
    • /
    • 2016
  • GPS(Global Positioning System) location tracking is a method for taking the precise coordinates after the coordinates are obtained by a GPS receiver, and displaying them on the map. In this paper with WAVE(Wireless Access for Vehicular Environment) simulation, we show that various services such as vehicle tracking service, real-time road conditions service and logistics can go tracking service, control and operation services according to the vehicle position and the traveling direction by using the GPS position data. A vehicle tracking system using GPS is automatically able to manage multiple RCP when exchanging data between RMA and the RCP, and it provides rapid requests and responses. To verify that multiple sessions between RMA and RM, as well as multiple sessions between RMA and RCP are able to be implemented, we take RMA as a RCP application on an OBU, until the RMA is receiving data response from corresponding RM. As a result of this experiment, we show that the response speeds of single session between RMA and RM using 1, 2, 3, and 4 kbyte unit data are similar, 62.32ms, 62.65ms, 63.02ms, and 63.48ms, respectively. Likewise, those of 128 muliple sessions using 1, 2, 3, and 4 kbyte unit data are not much more time difference, 298.08ms, 302.21ms, 322.85ms, and 329.62ms, respectively.

Tracking Analysis of Unknown Space Objects in Optical Space Observation Systems (광학 우주 관측 시스템의 미지 우주물체 위치 추적 분석)

  • Hyun, Chul;Lee, Sangwook;Lee, Hojin;Park, Seung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1826-1834
    • /
    • 2021
  • In this paper, we check the possibility of continuous tracking when photographing unknown space objects in a short period of time in an optical observation system on the ground. Simulated observation data were generated for target limited to low-orbit areas. The performance index of the prediction error was set in consideration of the property of targets. Kalman Filter was applied to predict the next location of the target. A constant velocity/acceleration dynamic model was applied to the two axes of the azimuth/elevation of the unknown space object respectively. As a result of performing the Monte Carlo simulation, the maximum error ratio of the maximum nonlinear section was less than 2%, which could be determined to ensure continuous tracking. The CA model had little change in the prediction error value for each case, making it more suitable for tracking unknown space objects. This analysis could provide a foundation for determining the orbit of unknown space objects using optical observation.

Implementation of Quad-rotor Hovering Systems with Tracking (추적이 가능한 쿼드로터 호버링 시스템 구현)

  • Jung, Won-Ho;Chung, Jae-Pil
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.6
    • /
    • pp.574-579
    • /
    • 2016
  • Unlike general unmanned aerial vehicles, the quad-rotor is attracting the attention of many people because of simple structure and very useful value. However, as the interest in drones increases, the safety and location of vehicles are becoming more important provide against aviation safety accidents or lost accidents. Therefore, in this paper, we propose a tracking system that stabilizes the model with a simple controller by linearized modeling and grasp tilt angle data from various sensor through the filter. The developed tracking system transmits the position of the quad-rotor in flight to the computer and shows it through the route, so it can check the flight path and various information such as flight speed and altitude at the same time. Then the sensor used in the actual quad-rotor can not measure exact sensor data for disturbance and vibration. So we use sensor fusion of Kalman filter and Complementary filter to overcome this problem and the stability of the quad-rotor hovering is realized by PID control. Through simulation, various information such as the speed, position, and altitude of the quad-rotor were confirmed in real time.

A UGV Hybrid Path Generation Method by using B-spline Curve's Control Point Selection Algorithm (무인 주행 차량의 하이브리드 경로 생성을 위한 B-spline 곡선의 조정점 선정 알고리즘)

  • Lee, Hee-Mu;Kim, Min-Ho;Lee, Min-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.138-142
    • /
    • 2014
  • This research presents an A* based algorithm which can be applied to Unmanned Ground Vehicle self-navigation in order to make the driving path smoother. Based on the grid map, A* algorithm generated the path by using straight lines. However, in this situation, the knee points, which are the connection points when vehicle changed orientation, are created. These points make Unmanned Ground Vehicle continuous navigation unsuitable. Therefore, in this paper, B-spline curve function is applied to transform the path transfer into curve type. And because the location of the control point has influenced the B-spline curve, the optimal control selection algorithm is proposed. Also, the optimal path tracking speed can be calculated through the curvature radius of the B-spline curve. Finally, based on this algorithm, a path created program is applied to the path results of the A* algorithm and this B-spline curve algorithm. After that, the final path results are compared through the simulation.

Near-Real-Time Ship Tracking using GPS Precise Point Positioning (GPS 정밀단독측위 기법을 이용한 준실시간 선박 위치추적)

  • Ha, Ji-Hyun;Heo, Moon-Beom;Nam, Gi-Wook
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.6
    • /
    • pp.783-790
    • /
    • 2010
  • For safety navigation of ships at sea, ships monitor their location obtained from Global Positioning Satellite System (GNSS). In this study, we computed near-real-time positions of a ship at sea using GPS Precise Point Positioning (PPP) technique and analyzed precision of the near-real-time positions. We conducted ship borne GPS observations in the south sea of Korea. To process the GPS data using PPP technique, GIPSY-OASIS (GPS Inferred Positioning System-Orbit Analysis and Simulation Software) developed by the Jet Propulsion Laboratory was used. Antenna phase center variations, ocean tidal loading displacements, and azimuthal gradients of the atmosphere were corrected or estimated as standard procedures of high-precision GIPSY-OASIS data processing. As a result, the precisions of near-real-time positions was ~1cm.

Robust Maneuvering Target Tracking Applying the Concept of Multiple Model Filter and the Fusion of Multi-Sensor (다중센서 융합 및 다수모델 필터 개념을 적용한 강인한 기동물체 추적)

  • Hyun, Dae-Hwan;Yoon, Hee-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.1
    • /
    • pp.51-64
    • /
    • 2009
  • A location tracking sensor such as GPS, INS, Radar, and optical equipments is used in tracking Maneuvering Targets with a multi-sensor, and such systems are used to track, detect, and control UAV, guided missile, and spaceship. Until now, Most of the studies related to tracking Maneuvering Targets are on fusing multiple Radars, or adding a supplementary sensor to INS and GPS. However, A study is required to change the degree of application in fusions since the system property and error property are different from sensors. In this paper, we perform the error analysis of the sensor properties by adding a ground radar to GPS and INS for improving the tracking performance by multi-sensor fusion, and suggest the tracking algorithm that improves the precision and stability by changing the sensor probability of each sensor according to the error. For evaluation, we extract the altitude values in a simulation for the trajectory of UAV and apply the suggested algorithm to carry out the performance analysis. In this study, we change the weight of the evaluated values according to the degree of error between the navigation information of each sensor to improve the precision of navigation information, and made it possible to have a strong tracking which is not affected by external purposed environmental change and disturbance.

  • PDF

Mobile Location Estimation scheme Using Fuzzy Set Theory in Microcell Structure (마이크로셀 구조에서 퍼지 이론을 이용한 이동체 위치 추정 방법)

  • Lee, Jong-Chan;Lee, Mun-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.10
    • /
    • pp.1-8
    • /
    • 2000
  • In this paper, positioning schemes based on AOA(Angle of Arrival), TOA(Time of Arrival), and TDOA(Time Difference of Arrival) measurements are reviewed and analyzed. In the case of using those schemes in microcell structure with severe multipath fading and shadowing conditions, the rapid and unpredictable variation of signal level makes it difficult to estimate the position and velocity of mobiles. Therefore, we propose a novel mobile tracking method based on the multicriteria decision making, in which uncertain parameters such as RSS(Received Signal Strength), the distance between mobile and base station, the moving direction, and the previous location are participated in the decision process using aggregation function in fuzzy set theory. Through a simulation, we analysis the impaction of the frequent change of direction and speed of mobiles.

  • PDF