• Title/Summary/Keyword: localized reliability

Search Result 53, Processing Time 0.017 seconds

Applications of Micro-Droplet Cell to Study of Localized Corrosion Resistance of Stainless Steels (스테인리스강의 국부부식 저항성 연구에 미세방울셀의 응용)

  • Kim Sung-Yu;Kim Hee-San
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.2
    • /
    • pp.70-76
    • /
    • 2006
  • Micro-droplet cell with free droplet as a micro-electrochemical technique has been limited to apply to electrochemical systems with high wetting properties such as an acidic solution and low grade stainless steels(Type 316L). By loading negative pressure to a droplet, control of droplet size, and use of hydrophobic gasket, the cell is modified to be allowed to use for electrochemical systems with high wetting properties. For giving the reliability of new cell, studies on local corrosion were conducted for three different systems-an acidic chloride solution and high chromium ferritic stainless steel, the other acidic chloride solution and type 316, and a neutral chloride solution and type 316. stainless steel. Firstly, the modified micro-droplet cell allows the anodic polarization curves in an acidic chloride solution to show the fact that the local corrosion of high chromium stainless steel near the $\alpha/\sigma$ interface is due to the Cr depleted zone. Secondly, the local anodic polarization test of type 316 L in the other acidic chloride solution can be successfully conducted in the cell. Furthermore, the local polarization curves help elucidating the corrosion of type 316 with $\delta-ferrite$ phase. Finally, the polarization curves of type 316 L in a neutral chloride solution indicates that the factor affecting the pitting corrosion resistance was inclusions rather than $\delta-ferrite$.

Temporal distritution analysis of design rainfall by significance test of regression coefficients (회귀계수의 유의성 검정방법에 따른 설계강우량 시간분포 분석)

  • Park, Jin Heea;Lee, Jae Joon
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.4
    • /
    • pp.257-266
    • /
    • 2022
  • Inundation damage is increasing every year due to localized heavy rain and an increase of rainfall exceeding the design frequency. Accordingly, the importance of hydraulic structures for flood control and defense is also increasing. The hydraulic structures are designed according to its purpose and performance, and the amount of flood is an important calculation factor. However, in Korea, design rainfall is used as input data for hydrological analysis for the design of hydraulic structures due to the lack of sufficient data and the lack of reliability of observation data. Accurate probability rainfall and its temporal distribution are important factors to estimate the design rainfall. In practice, the regression equation of temporal distribution for the design rainfall is calculated using the cumulative rainfall percentage of Huff's quartile method. In addition, the 6th order polynomial regression equation which shows high overall accuracy, is uniformly used. In this study, the optimized regression equation of temporal distribution is derived using the variable selection method according to the principle of parsimony in statistical modeling. The derived regression equation of temporal distribution is verified through the significance test. As a result of this study, it is most appropriate to derive the regression equation of temporal distribution using the stepwise selection method, which has the advantages of both forward selection and backward elimination.

Predicting the Performance of Recommender Systems through Social Network Analysis and Artificial Neural Network (사회연결망분석과 인공신경망을 이용한 추천시스템 성능 예측)

  • Cho, Yoon-Ho;Kim, In-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.159-172
    • /
    • 2010
  • The recommender system is one of the possible solutions to assist customers in finding the items they would like to purchase. To date, a variety of recommendation techniques have been developed. One of the most successful recommendation techniques is Collaborative Filtering (CF) that has been used in a number of different applications such as recommending Web pages, movies, music, articles and products. CF identifies customers whose tastes are similar to those of a given customer, and recommends items those customers have liked in the past. Numerous CF algorithms have been developed to increase the performance of recommender systems. Broadly, there are memory-based CF algorithms, model-based CF algorithms, and hybrid CF algorithms which combine CF with content-based techniques or other recommender systems. While many researchers have focused their efforts in improving CF performance, the theoretical justification of CF algorithms is lacking. That is, we do not know many things about how CF is done. Furthermore, the relative performances of CF algorithms are known to be domain and data dependent. It is very time-consuming and expensive to implement and launce a CF recommender system, and also the system unsuited for the given domain provides customers with poor quality recommendations that make them easily annoyed. Therefore, predicting the performances of CF algorithms in advance is practically important and needed. In this study, we propose an efficient approach to predict the performance of CF. Social Network Analysis (SNA) and Artificial Neural Network (ANN) are applied to develop our prediction model. CF can be modeled as a social network in which customers are nodes and purchase relationships between customers are links. SNA facilitates an exploration of the topological properties of the network structure that are implicit in data for CF recommendations. An ANN model is developed through an analysis of network topology, such as network density, inclusiveness, clustering coefficient, network centralization, and Krackhardt's efficiency. While network density, expressed as a proportion of the maximum possible number of links, captures the density of the whole network, the clustering coefficient captures the degree to which the overall network contains localized pockets of dense connectivity. Inclusiveness refers to the number of nodes which are included within the various connected parts of the social network. Centralization reflects the extent to which connections are concentrated in a small number of nodes rather than distributed equally among all nodes. Krackhardt's efficiency characterizes how dense the social network is beyond that barely needed to keep the social group even indirectly connected to one another. We use these social network measures as input variables of the ANN model. As an output variable, we use the recommendation accuracy measured by F1-measure. In order to evaluate the effectiveness of the ANN model, sales transaction data from H department store, one of the well-known department stores in Korea, was used. Total 396 experimental samples were gathered, and we used 40%, 40%, and 20% of them, for training, test, and validation, respectively. The 5-fold cross validation was also conducted to enhance the reliability of our experiments. The input variable measuring process consists of following three steps; analysis of customer similarities, construction of a social network, and analysis of social network patterns. We used Net Miner 3 and UCINET 6.0 for SNA, and Clementine 11.1 for ANN modeling. The experiments reported that the ANN model has 92.61% estimated accuracy and 0.0049 RMSE. Thus, we can know that our prediction model helps decide whether CF is useful for a given application with certain data characteristics.