• 제목/요약/키워드: localized fire

검색결과 22건 처리시간 0.019초

Behavior of composite box bridge girders under localized fire exposure conditions

  • Zhang, Gang;Kodur, Venkatesh;Yao, Weifa;Huang, Qiao
    • Structural Engineering and Mechanics
    • /
    • 제69권2호
    • /
    • pp.193-204
    • /
    • 2019
  • This paper presents results from experimental and numerical studies on the response of steel-concrete composite box bridge girders under certain localized fire exposure conditions. Two composite box bridge girders, a simply supported girder and a continuous girder respectively, were tested under simultaneous loading and fire exposure. The simply supported girder was exposed to fire over 40% of its span length in the middle zone, and the two-span continuous girder was exposed to fire over 38% of its length of the first span and full length of the second span. A measurement method based on comparative rate of deflection was provided to predict the failure time in the hogging moment zone of continuous composite box bridge girders under certain localized fire exposure condition. Parameters including transverse and longitudinal stiffeners and fire scenarios were introduced to investigate fire resistance of the composite box bridge girders. Test results show that failure of the simply supported girder is governed by the deflection limit state, whereas failure of the continuous girder occurs through bending buckling of the web and bottom slab in the hogging moment zone. Deflection based criterion may not be reliable in evaluating failure of continuous composite box bridge girder under certain fire exposure condition. The fire resistance (failure time) of the continuous girder is higher than that of the simply supported girder. Data from fire tests is successfully utilized to validate a finite element based numerical model for further investigating the response of composite box bridge girders exposed to localized fire. Results from numerical analysis show that fire resistance of composite box bridge girders can be highly influenced by the spacing of longitudinal stiffeners and fire severity. The continuous composite box bridge girder with closer longitudinal stiffeners has better fire resistance than the simply composite box bridge girder. It is concluded that the fire resistance of continuous composite box bridge girders can be significantly enhanced by preventing the hogging moment zone from exposure to fire. Longitudinal stiffeners with closer spacing can enhance fire resistance of composite box bridge girders. The increase of transverse stiffeners has no significant effect on fire resistance of composite box bridge girders.

Comparison of Two Different Smoke Extraction Schemes of Transversely Ventilated Tunnel Fire

  • Rie, Dong-Ho;Kim, Hyung-Taek;Yoo, Ji-Oh;Shin, Hyun-Jun;Yoon, Sung-Wook
    • International Journal of Safety
    • /
    • 제4권2호
    • /
    • pp.30-35
    • /
    • 2005
  • In case of tunnel fire, one of the most effective facilities to save lives is the smoke control system. In this study, two different smoke extraction schemes of transversely ventilated tunnel were compared. One is the smoke extraction using the fixed exhaust ports on the false ceiling to achieve the uniform and distributed smoke extraction (uniform exhaust). The other is that using the remote controlled smoke extraction where only vents close to the fire is opened whereas the others are closed to enhance the limitation of the smoke spread (localized exhaust). A number of numerical simulations were performed to find out the optimal smoke extraction rate at each smoke extraction scheme to allow the tunnel users to escape to the safe area without endangering their lives by smoke.

연료전지자동차의 고압수소저장시스템 국부화재 신뢰성 평가 (I) (The Evaluation of Fire Reliability for the High Pressure Hydrogen Storage System of Fuel Cell Vehicle (I))

  • 김상현;최영민;황기호;심지현;황인철;임태원
    • 한국수소및신에너지학회논문집
    • /
    • 제22권4호
    • /
    • pp.520-526
    • /
    • 2011
  • In recent years, it is very important that hydrogen storage system is safe for user in any circumstances in case of crash and fire. Because the hydrogen vehicle usually carry high pressurized cylinders, it is necessary to do safety design for fire. The Global Technical Regulation (GTR) has been enacted for localized and engulfing fire test. High pressure hydrogen storage system of fuel cell electrical vehicles are equipped with Thermal Pressure Relief Device (TPRD) installed in pressured tank cylinder to prevent the explosion of the tank during a fire. TPRDs are safety devices that perceive a fire and release gas in the pressure tank cylinder before it is exploded. In this paper, we observed the localized and engulfing behavior of tank safety, regarding the difference of size and types of the tanks in accordance with GTR.

Assessment of steel structures designed for progressive collapse under localized fires

  • Behrouz Behnam
    • Steel and Composite Structures
    • /
    • 제46권2호
    • /
    • pp.279-292
    • /
    • 2023
  • Structural design against the progressive collapse has been a vital necessity for decades due to occasional tragic events. The question of whether designed structures against the progressive collapse are still robust if subjected to multi-hazard scenarios containing column removal and successive localized fires is ad-dressed in the current study. Two seven-story steel structures with an identical area but different structural configurations of 4- and 5-bays are designed against the progressive collapse; the structural components are also fireproofed for a 60 min fire resistance. The structures are then subjected to different column re-moval scenarios over different stories followed immediately by localized fires. Results indicate that the structures are not able to keep their stability under all of the considered scenarios; the 4-bay structure is more vulnerable than the 5-bay structure. It is also indicated that upper stories are more sensitive toward the considered scenarios than lower stories. To advance structural safety, two strategies are adopted: in-creasing the thickness of the insulation materials to reduce the thermal effects, or, increasing the safety fac-tor (ΩN) of the structures when designing against the progressive collapse. As for the first strategy, provid-ing a 35% and a 25% increase in the insulation thicknesses of the structural components of the 4-bay and 5-bay structures, respectively, can prevent a progressive collapse to trigger. As for the second strategy, in-creasing ΩN by 10% can enhance the structural integrity to where no collapse occurs under all of the sce-narios.

Localized Corrosion of Zn-Plated Carbon Steel Used as a Fire Sprinkler Pipe

  • Lee, Jin Hee;Lee, You-Kee;Lee, Kyu Hwan;Kim, Dong-Kyu;Lee, Sung Gun;Lee, Sang Hwa;Kim, Insoo
    • Corrosion Science and Technology
    • /
    • 제8권4호
    • /
    • pp.148-152
    • /
    • 2009
  • The failure of a Zn-plated carbon steel pipe that served as a fire sprinkler was investigated in terms of the pipe's corrosion products. The pipes leaked through holes formed beneath the tubercles. The formation of oxygen concentration cell involves colonization of metal surface by aerobic bacteria or other slime formers, and anodic reaction beneath tubercle is accelerated by the presence of SRB, leading to the formation of hole beneath tubercle.

우리나라 산불 발생의 원인별 공간적 특성 분석 (Cause-specific Spatial Point Pattern Analysis of Forest Fire in Korea)

  • 곽한빈;이우균;이시영;원명수;구교상;이병두;이명보
    • 한국산림과학회지
    • /
    • 제99권3호
    • /
    • pp.259-266
    • /
    • 2010
  • 우리나라에서 산불 발생 공간분포는 인간 활동과 큰 관련성이 있기 때문에, 지역별 군집형태의 강한 공간의존성을 갖는다. 본 연구에서는 공간의존성의 개념에 입각하여 점자료 분석법을 통한 산불발생의 공간분포패턴을 분석하였다. Ripley의 K 함수를 이용하여 산불 발생 원인별 공간분포 형태를 파악하였으며, Kernel 함수를 통해 산불발생의 공간적 집중도를 분석하였다. 그 결과 정도는 상이하지만 모든 원인의 산불이 임의(random) 분포가 아닌 군집화(clustered)되어 발생하는 특징이 있는 것으로 나타났다. 또한, 산불 발생의 군집성을 원인별로 크게 두 집단으로 나눌 수 있었다. 첫째는 전국적 발생 패턴을 가지는 원인으로 입산자 실화, 논밭두렁 소각과 같은 활동과 관련된 것이고 또 다른 하나는 국지적 군집성을 가지는 원인으로 담뱃불이나 어린이 불장난, 방화이다. 그 군집성의 범위는 30 km내외로 나타났으며, 그 범위 밖에서는 임의 분포하고 있었다. Kernel 함수에 의한 원인별 집중도 분석에서는 강한 군집도를 나타냈던 3가지 원인(담뱃불, 어린이 불장난, 방화)의 경우 대부분 인구밀도가 높은 수도권을 중심으로 발생하는 것을 확인할 수 있었다.

건물화재의 플래시오버 도달 시간에 영향을 미치는 인자들에 관한 연구 (Parameter Effects on the Time to Reach Flashover Conditions in Single Room Fires)

  • 김형진;데이비드 릴리;백병준;박복춘
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1384-1388
    • /
    • 2003
  • In structural fires, flashover is characterized by the rapid transition in fire behavior from localized burning of fuel to the involvement of all combustibles in the enclosure. An investigation of parameter effects on the time to reach flashover conditions in a typical single room fire is undertaken using a zone method (FAST) and Thomas method. Major parameters affecting the time to reach flashover are found to be fire growth rate, ventilation opening area and internal room surface. The results of the FAST and the Thomas Method give very similar results of the time to reach flashover..

  • PDF

강원지역 산사태발생지의 산불발생이력과 강우특성에 관한 분석 (Analysis on the effect of the forest fire and rainfall on landslide in Gangwon area)

  • 전경재;이승우;윤찬영
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.1020-1025
    • /
    • 2009
  • Recently, unusual change of weather occurred in world wide region causes localized heavy rainfall and consequently disasters like landslide and debris flow in steep slope area. And the main factors of these disasters are rainfall and forest fire. To verify the existing landslide prediction and warning system, information about landslide and rainfall were collected for a data base system and analysed.

  • PDF

Optimum PP Fiber Dosage for the Control of Spalling of High Strength Reinforced Concrete Columns

  • Yoo, Suk-Hyeong;Shin, Sung-Woo;Kim, In-Ki
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권2E호
    • /
    • pp.103-109
    • /
    • 2006
  • Spalling is defined as damages to concrete exposed to high temperature during fire, causing cracks and localized bursting of small pieces of concrete. As the concrete strength increases, the degree of damage caused by spalling becomes more serious due to impaired permeability. It is reported that polypropylene(PP) fiber has an important role in protecting concrete from spalling, and the optimum dosage of PP fiber is 0.2%. However, this study was conducted on non-reinforced concrete specimens. The high-temperature behavior of high-strength reinforced concrete columns with various concrete strength and various quantity of PP fibers is investigated in this study. The results revealed that the ratio of unstressed residual strength of columns increased as the concrete strength increased and as the quantity of PP fiber increased from 0% to 0.2%. However, the effect of PP fiber quantity on residual strength of column was barely above 0.2%.

Failure Investigation of Fire-Side Water-Wall Tube Boiler

  • Fatah, M.C.;Agustiadi, D.;Pramono, A.W.
    • Corrosion Science and Technology
    • /
    • 제20권5호
    • /
    • pp.242-248
    • /
    • 2021
  • Unforeseen failures of boilers in power plants may affect the continuation of electricity generation. Main failures in boilers are influenced by the tube material, tube position, boiler service temperature and pressure, and chemical composition of the feed water and coal. This investigation was intended to find answers on the causes and mechanism of failure of the fire-side boiler water-wall tubes, due to perforation and corrosion. The tube conformed to the material requirements in terms of its chemical composition and hardness. Microscopic examination showed ferrite and pearlite indicating no changes in its microstructure due to the temperature variation. SEM test showed a single layer and homogenous film density particularly on the area far from perforation. However, layers of corrosion product were formed on the nearby perforation area. EDX showed that there were Na, Ca, S, and O elements on the failed surface. XRD indicated the presence of Fe2O3 oxide. The failure mechanism was identified as a result of significant localized wall thinning of the boiler water wall-tube due to oxidation.