• 제목/요약/키워드: locality inductive

검색결과 1건 처리시간 0.013초

비전 트랜스포머 성능향상을 위한 이중 구조 셀프 어텐션 (A Dual-Structured Self-Attention for improving the Performance of Vision Transformers)

  • 이광엽;문환희;박태룡
    • 전기전자학회논문지
    • /
    • 제27권3호
    • /
    • pp.251-257
    • /
    • 2023
  • 본 논문에서는 비전 트랜스포머의 셀프 어텐션이 갖는 지역적 특징 부족을 개선하는 이중 구조 셀프 어텐션 방법을 제안한다. 객체 분류, 객체 분할, 비디오 영상 인식에서 합성곱 신경망보다 연산 효율성이 높은 비전 트랜스포머는 상대적으로 지역적 특징 추출능력이 부족하다. 이 문제를 해결하기 위해 윈도우 또는 쉬프트 윈도우를 기반으로 하는 연구가 많이 이루어지고 있으나 이러한 방법은 여러 단계의 인코더를 사용하여 연산 복잡도의 증가로 셀프 어텐션 기반 트랜스포머의 장점이 약화 된다. 본 논문에서는 기존의 방법보다 locality inductive bias 향상을 위해 self-attention과 neighborhood network를 이용하여 이중 구조 셀프 어텐션을 제안한다. 지역적 컨텍스트 정보 추출을 위한 neighborhood network은 윈도우 구조보다 훨씬 단순한 연산 복잡도를 제공한다. 제안된 이중 구조 셀프 어텐션 트랜스포머와 기존의 트랜스포머의 성능 비교를 위해 CIFAR-10과 CIFAR-100을 학습 데이터를 사용하였으며 실험결과 Top-1 정확도에서 각각 0.63%과 1.57% 성능이 개선되었다.