• 제목/요약/키워드: local vibration

검색결과 511건 처리시간 0.029초

Free vibration and static analysis of functionally graded skew magneto-electro-elastic plate

  • Kiran, M.C.;Kattimani, S.C.
    • Smart Structures and Systems
    • /
    • 제21권4호
    • /
    • pp.493-519
    • /
    • 2018
  • This article presents a finite element (FE) model to assess the free vibration and static response of a functionally graded skew magneto-electro-elastic (FGSMEE) plate. Through the thickness material grading of FGSMEE plate is achieved using power law distribution. The coupled constitutive equations along with the total potential energy approach are used to develop the FE model of FGSMEE plate. The transformation matrix is utilized in bringing out the element matrix corresponding to the global axis to a local axis along the skew edges to specify proper boundary conditions. The effect of skew angle on the natural frequency of an FGSMEE plate is analysed. Further, the study includes the evaluation of the static behavior of FGSMEE plate for various skew angles. The influence of skew angle on the primary quantities such as displacements, electric potential, and magnetic potential, and secondary quantities such as stresses, electric displacement and magnetic induction is studied in detail. In addition, the effect of power-law gradient, thickness ratio, boundary conditions and aspect ratio on the free vibration and static response characteristics of FGSMEE plate has been investigated.

3차원 축류압축기 블레이드의 유체유발진동 해석 (Flow-Induced Vibration (FIV) Analysis of a 3D Axial Compressor Blade)

  • 김동현;김유성;;정규강;김경희;민대기
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.652-653
    • /
    • 2009
  • In this study, flow-induced vibration (FIV) analyses have been conducted for a 3D compressor blade model. Advanced computational analysis system based on computational fluid dynamics (CFD) and computational structural dynamics (CSD) has been developed in order to investigate detailed dynamic responses of designed compressor blades. Fluid domains are modeled using the computational grid system with local grid deforming and remeshing techniques. Reynolds-averaged Navier-Stokes equations with $\kappa-\varepsilon$ turbulence model are solved for unsteady flow problems of the rotating compressor model. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D compressor blade for fluid-structure interaction (FSI) problems. Detailed dynamic responses and instantaneous pressure contours on the blade surfaces considering flow-separation effects are presented to show the multi-physical phenomenon of the rotating compressor blade.

  • PDF

STRUCTURAL MOBILITY 분석을 통한 하드 디스크 드라이브의 소음제어(현장개발사례: SAMSUNG HDD 'SPINPOINT V20/P20 SERIES' ) (Noise Control of Hard Disk Drive Using Structural Mobility Analysis)

  • 강성우;한윤식;황태연;손영;오동호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.911-916
    • /
    • 2001
  • Structural acoustic modification method based on the structural mobility analysis is applied to reduce the structure-borne noise radiated from hard disk drive system. Sound intensity techniques and ODS(Operational Deflection Shape) techniques are also used in order to provide the structural acoustic information for the mobility modification. The sound intensity is for the acoustic visualization of the noise source locations, and the ODS is for the visualization of the vibration pattern and its dynamic characteristics of the noise sources. Using visualization information of sound and vibration, local structural input mobility is reduced in the frequency band of interest by designing asymmetrical wave-stringer structure in the wave-number domain as well as frequency domain. The overall sound pressure level is reduced by 4dB and its controlled sound power radiated from the disk drive is proved to under 2.8Bel in idle-spinning mode and 3.1 Bel in random-seeking mode, which are the lowest noise levels in the hard disk drive industry.

  • PDF

초음파 진동에 의해 발생된 음향유동을 활용한 급속냉각 메카니즘 (Rapid Cooling Mechanism Utilizing Acoustic Streaming Generated by Ultrasonic Vibrations)

  • 노병국;권기정;이동렬
    • 한국소음진동공학회논문집
    • /
    • 제16권10호
    • /
    • pp.1057-1066
    • /
    • 2006
  • Acoustic streaming Induced by longitudinal vibration at 30 kHz is visualized for a test fluid flow between the stationary glass plate and ultrasonic vibrating surface with particle imaging velocimetry (PIV) To measure an increase in the velocity of air flow due to acoustic streaming, the velocity of air flow in a gap between the heat source and ultrasonic vibrator is obtained quantitatively using PIV. The ultrasonic wave propagating into air in the gap generates steady-state secondary vortex called acoustic streaming which enhances convective cooling of the stationary heat source. Heat transfer through air in the gap is represented by experimental convective heat transfer coefficient with respect to the gap. Theoretical analysis shows that gaps for maximum heat transfer enhancement are the multiple of half wavelength. Optimal gaps for the actual design are experimentally found to be half wavelength and one wavelength. A drastic temperature variation exists for the local axial direction of the vibrator according to the measurement of the temperature distribution in the gap. The acoustic streaming velocity of the test fluid in the gap is at maximum when the gap agrees with the multiples of half wavelength of the ultrasonic wave, which are specifically 6 mm and 12 mm.

3차원 축류압축기 블레이드의 유체유발진동 해석 (Flow-induced Vibration(FIV) Analysis of a 3D Axial Compressor Blade)

  • 김동현;김유성;;정규강;김경희;민대기
    • 한국소음진동공학회논문집
    • /
    • 제19권6호
    • /
    • pp.551-559
    • /
    • 2009
  • In this study, flow-induced vibration(FIV) analyses have been conducted for a 3D compressor blade model. Advanced computational analysis system based on computational fluid dynamics(CFD) and computational structural dynamics(CSD) has been developed in order to investigate detailed dynamic responses of designed compressor blades. Fluid domains are modeled using the computational grid system with local grid deforming and remeshing techniques. Reynolds-averaged Navier-Stokes equations with $\kappa-\epsilon$ turbulence model are solved for unsteady flow problems of the rotating compressor model. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D compressor blade for fluid-structure interaction(FSI) problems. Detailed dynamic responses and instantaneous pressure contours on the blade surfaces considering flow-separation effects are presented to show the multi-physical phenomenon of the rotating compressor blade.

Vibration-based structural health monitoring using large sensor networks

  • Deraemaeker, A.;Preumont, A.;Reynders, E.;De Roeck, G.;Kullaa, J.;Lamsa, V.;Worden, K.;Manson, G.;Barthorpe, R.;Papatheou, E.;Kudela, P.;Malinowski, P.;Ostachowicz, W.;Wandowski, T.
    • Smart Structures and Systems
    • /
    • 제6권3호
    • /
    • pp.335-347
    • /
    • 2010
  • Recent advances in hardware and instrumentation technology have allowed the possibility of deploying very large sensor arrays on structures. Exploiting the huge amount of data that can result in order to perform vibration-based structural health monitoring (SHM) is not a trivial task and requires research into a number of specific problems. In terms of pressing problems of interest, this paper discusses: the design and optimisation of appropriate sensor networks, efficient data reduction techniques, efficient and automated feature extraction methods, reliable methods to deal with environmental and operational variability, efficient training of machine learning techniques and multi-scale approaches for dealing with very local damage. The paper is a result of the ESF-S3T Eurocores project "Smart Sensing For Structural Health Monitoring" (S3HM) in which a consortium of academic partners from across Europe are attempting to address issues in the design of automated vibration-based SHM systems for structures.

Vibration and impedance monitoring for prestress-loss prediction in PSC girder bridges

  • Kim, Jeong-Tae;Park, Jae-Hyung;Hong, Dong-Soo;Cho, Hyun-Man;Na, Won-Bae;Yi, Jin-Hak
    • Smart Structures and Systems
    • /
    • 제5권1호
    • /
    • pp.81-94
    • /
    • 2009
  • A vibration-impedance-based monitoring method is proposed to predict the loss of prestress forces in prestressed concrete (PSC) girder bridges. Firstly, a global damage alarming algorithm using the change in frequency responses is formulated to detect the occurrence of damage in PSC girders. Secondly, a local damage detection algorithm using the change in electro-mechanical impedance features is selected to identify the prestress-loss in tendon and anchoring members. Thirdly, a prestress-loss prediction algorithm using the change in natural frequencies is selected to estimate the extent of prestress-loss in PSC girders. Finally, the feasibility of the proposed method is experimentally evaluated on a scaled PSC girder model for which acceleration responses and electro-mechanical impedances were measured for several damage scenarios of prestress-loss.

Mechanical behavior of composite gel periodic structures with the pattern transformation

  • Hu, Jianying;He, Yuhao;Lei, Jincheng;Liu, Zishun;Swaddiwudhipong, Somsak
    • Structural Engineering and Mechanics
    • /
    • 제50권5호
    • /
    • pp.605-616
    • /
    • 2014
  • When the periodic cellular structure is loaded or swelling beyond the critical value, the structure may undergo a pattern transformation owing to the local elastic instabilities, thus leading to structural collapse and the structure changing to a new configuration. Based on this deformation-triggered pattern, we have proposed the novel composite gel materials. This designed material is a type of architectural material possessing special mechanical properties. In this study, the mechanical behavior of the composite gel periodic structure with various gel inclusions is studied further through numerical simulations. When pattern transformation occurs, it results in a different elastic relationship compared with the material at untransformed state. Based on the obtained nominal stress versus nominal strain behavior, the Poisson's ratio and corresponding deformed structure patterns, we investigate the performance of designed composite materials and the effects of the uniformly distributed gel inclusions on composite materials. A better understanding of the characteristics of these composite gel materials is a key to develop its potential applications on new soft machines.

보강된 적층 복합재료 주름판의 진동해석 (Vibration Analysis of Stiffened Corrugated Composite Plates)

  • 박경조;김영완
    • Composites Research
    • /
    • 제33권6호
    • /
    • pp.377-382
    • /
    • 2020
  • 본 연구에서는 Rayleigh-Ritz 법을 이용하여 열린 단면보로 보강된 복합재료 주름판의 자유진동 특성을 연구하였다. 복합재료 주름판에 대해 등가균질모델을 이용하였으며, 이 등가모델은 주름판을 두 수직방향에 대해 서로 다른 재료특성을 갖도록 직교이방성판으로 취급한다. 등가 직교이방성판의 운동은 회전 관성 및 횡전단변형을 고려하기 위해 1차 전단변형이론을 기초로 표현된다. 또한 진동형상에서 보강재의 위치에 따른 국부 형상을 표현하기 위해 이산보강이론이 적용되었다. 제안된 해석 방법에 대한 타당성을 검증하기 위해 ANSYS를 이용한 유한요소해석을 수행하였으며, 두 방법을 이용해 얻은 진동수 및 진동형상을 비교하였다.

A new quasi-3D plate theory for free vibration analysis of advanced composite nanoplates

  • Smain, Bezzina;Aicha, Bessaim;Mohammed Sid Ahmed, Houari;Marc, Azab
    • Steel and Composite Structures
    • /
    • 제45권6호
    • /
    • pp.839-850
    • /
    • 2022
  • This paper presents an analytical solution to study the combined effect of non-local and stretching effect on the vibration of advanced functionally graded (FG) nanoplates. A new quasi-3D plate theory is presented; there are only five unknowns and any shear correction factor is used. A new displacement field with a new shear warping function is proposed. The equilibrium equations of the FG nanoplates are obtained using the Hamilton principle and solved numerically using the Navier technique. The material properties of functionally graded nanoplates are presumed to change according to the power-law distribution of ceramic and metal constituents. The numerical results of this work are compared with those of other published results to indicate the accuracy and convergence of this theory. Hence, a profound parameterstudy is also performed to show the influence of many parameters of the functionally graded nanoplates on the free vibration responses is investigated.