• 제목/요약/키워드: local vibration

검색결과 507건 처리시간 0.029초

진동, 파동치료에 관한 국내 연구 동향 (An Overview on Vibration or Wave Therapy in Korea)

  • 이재흥;백지유;장성진;필감매
    • 대한의료기공학회지
    • /
    • 제20권1호
    • /
    • pp.15-67
    • /
    • 2020
  • Objective : The purpose of this study is to identify the trends of vibration(or wave) therapy in Korea, to actively utilize vibration(or wave) therapy, and to help research activities of vibration therapy in Korean Medicine. Methods : The following Korean words "진동기", "진동요법", "진동운동", "진동치료", "파동요법", "파동운동", "파동치료" were searched on three specialized search sites (RISS, NAL, DBpia). Trends of vibration therapy were analyzed through the selected researches suitable for this study among these searched researches in an overview format. Results : 1. A total of 8,116 studies were searched and a total of 365 studies were finally selected 2. From 2000 to 2019, when research began to increase in earnest, there were 17.45±10.28 studies per year, and the AGR(Average Annual Growth Rate) was 11.92%. 3. In the main field of research, the 'Medicine and Pharmacy' was the largest with 147(40.16%) studies. In the Middle Field, the 'Kinesiology' was the largest with 99(27.05%) studies. In the study design, 'RCT(Randomized Controlled trial)' was the largest with 138(47.75%) studies. In the Age Group, 'Youth' was the largest with 126(48.84%) studies. 4. The average of the number of participants was 24.90±17.44. 5. The most used Intervention was the 'WBV(Whole Body Vibration)' with 177(61.25%) studies. 6. The average of Intervention Period was 5.99±4.14 weeks, while the maximum was 36 weeks. 7. The journal that published the most research papers is 'K. J. of Sports Science(체육과학연구;13)', and the society is 'Rehabilitation Engineering And Assistive Technology Society of Korea(한국재활복지공학회; 14)'. The University that published the most dissertations is 'Sahmyook University(11)'. 8. The authors who published the most studies are Ju-Hwan O(8) as the main author and Tae Kyu Kwon(18) as the co-author (including the thesis Director). In an integrated analysis of the authors and co-authors, Tae Kyu Kwon published the most numerous studies(19) Conclusions : 1. The study of vibration or wave therapy has been increasing noticeably every year. 2. The major academic Fields studying vibration or wave therapy are the 'Kinesiologic Field', 'Physical Therapy Field', and 'Biomedical Engineering Field'. 3. The most chosen method of study design on vibration or wave treatment was 'RCT', and there was no significant change in the annual presentation rate. 4. Types of vibration or wave therapy could be classified as 'LVS(Local Vibration Stimulation)', 'WBV(Whole Body Vibration)', 'MV(Micro Vibration)', 'BV(Bio Vibration)' and 'SWV(Sound Wave Vibration)', and the study on Whole Body Vibration is most active. 5. Most of the studies of vibration or wave therapy were on musculoskeletal systems, but there were very few studies on internal diseases.

Damage identification of substructure for local health monitoring

  • Huang, Hongwei;Yang, Jann N.
    • Smart Structures and Systems
    • /
    • 제4권6호
    • /
    • pp.795-807
    • /
    • 2008
  • A challenging problem in structural damage detection based on vibration data is the requirement of a large number of sensors and the numerical difficulty in obtaining reasonably accurate results when the system is large. To address this issue, the substructure identification approach may be used. Due to practical limitations, the response data are not available at all degrees of freedom of the structure and the external excitations may not be measured (or available). In this paper, an adaptive damage tracking technique, referred to as the sequential nonlinear least-square estimation with unknown inputs and unknown outputs (SNLSE-UI-UO) and the sub-structure approach are used to identify damages at critical locations (hot spots) of the complex structure. In our approach, only a limited number of response data are needed and the external excitations may not be measured, thus significantly reducing the number of sensors required and the corresponding computational efforts. The accuracy of the proposed approach is illustrated using a long-span truss with finite-element formulation and an 8-story nonlinear base-isolated building. Simulation results demonstrate that the proposed approach is capable of tracking the local structural damages without the global information of the entire structure, and it is suitable for local structural health monitoring.

차선방법과 속도공간 명령 방식을 이용한 실내 주행 로봇의 지역 장애물 회피 (Local Obstacle Avoidance of an Indoor Mobile Robot Using Lane Method and Velocity Space Command Approach)

  • 김성철
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.105-110
    • /
    • 1999
  • This paper presents a local obstacle avoidance method for indoor mobile robots using Lane method and velocity Space Command approach. The method locates local obstacles using the information form multi-sensors, such that ultrasonic sensor array and laser scanning sensor. The method uses lane method to determine optimum collision-free heading direction of a robot. Also, it deals with the robot motion dynamics problem to reduce some vibration and guarantee fast movement as well. It yields translational and rotational velocities required to avoid the detected obstacles and to keep the robot heading direction toward goal location as close as possible. For experimental verification of the method, a mobile robot driven by two AC servo motors, equipped with 24 ultrasonic sensor array and laser scanning sensor navigates using the method through a corridor cluttered with obstacle.

  • PDF

Nonlocal dynamic modeling of mass sensors consisting of graphene sheets based on strain gradient theory

  • Mehrez, Sadok;Karati, Saeed Ali;DolatAbadi, Parnia Taheri;Shah, S.N.R.;Azam, Sikander;Khorami, Majid;Assilzadeh, Hamid
    • Advances in nano research
    • /
    • 제9권4호
    • /
    • pp.221-235
    • /
    • 2020
  • The following composition establishes a nonlocal strain gradient plate model that is essentially related to mass sensors laying on Winkler-Pasternak medium for the vibrational analysis from graphene sheets. To achieve a seemingly accurate study of graphene sheets, the posited theorem actually accommodates two parameters of scale in relation to the gradient of the strain as well as non-local results. Model graphene sheets are known to have double variant shear deformation plate theory without factors from shear correction. By using the principle of Hamilton, to acquire the governing equations of a non-local strain gradient graphene layer on an elastic substrate, Galerkin's method is therefore used to explicate the equations that govern various partition conditions. The influence of diverse factors like the magnetic field as well as the elastic foundation on graphene sheet's vibration characteristics, the number of nanoparticles, nonlocal parameter, nanoparticle mass as well as the length scale parameter had been evaluated.

동적 마스크 리소그래피를 이용한 하이드로젤 국소 패터닝 기법과 캔틸레버 제작 (Local hydrogel patterning and microcantilever fabrication using dynamic mask lithography)

  • 이정철;이일
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.809-809
    • /
    • 2013
  • We report a new method for highly controllable local patterning of a hydrogel on microfabricated cantilevers and fabrication of all hydrogel microcantilevers. We constructed a dynamic mask based photolithography setup using a commercial beam projector, a 3-axis microstage and other optical components. Dynamic masks generated from the beam projector controlled the shape, size, and position of hydrogel patterns while the 3-axis microstage mainly controlled the thickness of hydrogel patterns and hydrogel microcantilevers. Using the constructed setup, polyethyleneglycol diacrylate (PEGDA) was patterned on microfabricated cantilevers in a highly controlled manner. Currently, the smallest PEGDA patternable is a 5-${\mu}m$-diameter circle with a thickness of ~$10{\mu}m$. To confirm thicknesses of patterned PEGDAs on silicon microcantilevers, resonance frequencies of microcantilevers were measured before and after each PEGDA patterning. Thicknesses extracted from resonance measurements showed good agreement with measurements using an optical microscope. In addition, PEGDA microcantilevers with various dimensions and thicknesses were fabricated on glass and silicon substrates. Surfaces of fabricated all hydrogel microcantilevers were flat enough to facilitate other post processing and to be used for various sensing applications.

  • PDF

조합 유전 알고리듬을 이용한 증기 터빈 회전체-베어링 시스템의 최적설계 (Optimal Design for Steam-turbine Rotor-bearing System Using Combined Genetic Algorithm)

  • 김영찬;최성필;양보석
    • 한국소음진동공학회논문집
    • /
    • 제12권5호
    • /
    • pp.380-388
    • /
    • 2002
  • This paper describes the optimum design for low-pressure steam turbine rotor of 1,000 MW nuclear power plant by using a combined genetic algorithm, which uses both a genetic algorithm and a local concentrate search algorithm (e.g. simplex method). This algorithm is not only faster than the standard genetic algorithm but also supplies a more accurate solution. In addition, this algorithm can find the global and local optimum solutions. The objective is to minimize the resonance response (Q factor) and total weight of the shaft, and to separate the critical speeds as far from the operating speed as possible. These factors play very important roles in designing a rotor-bearing system under the dynamic behavior constraint. In the present work, the shaft diameter, the bearing length, and clearance are used as the design variables. The results show that the proposed algorithm can improve the Q factor and reduce the weight of the shaft and the 1st critical speed.

A simplified analysis of super building structures with setback

  • Takabatake, Hideo;Ikarashi, Fumiya;Matsuoka, Motohiro
    • Earthquakes and Structures
    • /
    • 제2권1호
    • /
    • pp.43-64
    • /
    • 2011
  • One-dimensional rod theory is very effective as a simplified analytical approach to large scale or complicated structures such as high-rise buildings, in preliminary design stages. It replaces an original structure by a one-dimensional rod which has an equivalent stiffness in terms of global properties. The mechanical behavior of structures composed of distinct constituents of different stiffness such as coupled walls with opening is significantly governed by the local variation of stiffness. Furthermore, in structures with setback the distribution of the longitudinal stress behaves remarkable nonlinear behavior in the transverse-wise. So, the author proposed the two-dimensional rod theory as an extended version of the rod theory which accounts for the two-dimensional local variation of structural stiffness; viz, variation in the transverse direction as well as longitudinal stiffness distribution. This paper proposes how to deal with the two-dimensional rod theory for structures with setback. Validity of the proposed theory is confirmed by comparison with numerical results of computational tools in the cases of static, free vibration and forced vibration problems for various structures. The transverse-wise nonlinear distribution of the longitudinal stress due to the existence of setback is clarified to originate from the long distance from setback.

진동을 동반한 슬링 운동이 어깨 손상 환자의 관절가동범위, 근력, 통증, 기능장애 수준에 미치는 영향 (Effects of Sling Exercise With Vibration on Range of Motion, Muscle Strength, Pain, Disability in Patients With Shoulder Injuries)

  • 지창연;김선엽
    • 한국전문물리치료학회지
    • /
    • 제26권3호
    • /
    • pp.11-22
    • /
    • 2019
  • Background: Sling exercises are frequently used for the rehabilitation process of patients with shoulder joint injuries, but research on the significant frequency intensity and appropriate treatment duration for sling exercises with local vibration stimulation is lacking. Objects: The aim of this study was to investigate the effects of sling exercise with vibration on shoulder range of motion (ROM), muscle strength, pain, and dysfunction in patients with a medical diagnosis of shoulder joint injury. Methods: Twenty-two patients were randomly assigned to the experiment and control groups. Six sling exercises with and without 50 Hz vibrations were applied in the experiment and control groups, respectively. Each exercise consisted of 3 sets of 5 repetitions performed for 6 weeks. The assessment tools used included shoulder joint range of motion, muscle strength, pain level, and shoulder pain and disability index for functional disability. We conducted re-evaluations before and 3 and 6 weeks after intervention. The changes in the measurement variables were analyzed and compared between the two groups. Results: The ROM of the external rotation of the shoulder joint had a significant interaction between the group and the measurement point (F=3.652, p<.05). In both groups, we found a significant increase in external rotation angle between the measurement points (p<.05). The flexor strength of the shoulder joint significant interaction between the group and the measurement point (F=4.247, p<.05). Both the experiment (p<.01) and control groups (p<.05) showed a significant increase in shoulder flexor strength at the measurement points. After 6 weeks of the interventions, both the groups showed significantly improved VAS (p<.01), SPADI (p<.01), and orthopedic tests (p<.01). However, there was no significant difference between the group and the measurement point in terms of the clinical outcomes observed. Conclusion: The sling exercise with local vibration of 50 Hz affected the external rotation of the shoulder range of motion and improved shoulder flexor strength in the patients with shoulder injuries. Therefore, we propose the use of the sling exercise intervention with vibration in the exercise rehabilitation of patients with shoulder joint injuries.

Free vibration and static analysis of functionally graded skew magneto-electro-elastic plate

  • Kiran, M.C.;Kattimani, S.C.
    • Smart Structures and Systems
    • /
    • 제21권4호
    • /
    • pp.493-519
    • /
    • 2018
  • This article presents a finite element (FE) model to assess the free vibration and static response of a functionally graded skew magneto-electro-elastic (FGSMEE) plate. Through the thickness material grading of FGSMEE plate is achieved using power law distribution. The coupled constitutive equations along with the total potential energy approach are used to develop the FE model of FGSMEE plate. The transformation matrix is utilized in bringing out the element matrix corresponding to the global axis to a local axis along the skew edges to specify proper boundary conditions. The effect of skew angle on the natural frequency of an FGSMEE plate is analysed. Further, the study includes the evaluation of the static behavior of FGSMEE plate for various skew angles. The influence of skew angle on the primary quantities such as displacements, electric potential, and magnetic potential, and secondary quantities such as stresses, electric displacement and magnetic induction is studied in detail. In addition, the effect of power-law gradient, thickness ratio, boundary conditions and aspect ratio on the free vibration and static response characteristics of FGSMEE plate has been investigated.

3차원 축류압축기 블레이드의 유체유발진동 해석 (Flow-Induced Vibration (FIV) Analysis of a 3D Axial Compressor Blade)

  • 김동현;김유성;;정규강;김경희;민대기
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.652-653
    • /
    • 2009
  • In this study, flow-induced vibration (FIV) analyses have been conducted for a 3D compressor blade model. Advanced computational analysis system based on computational fluid dynamics (CFD) and computational structural dynamics (CSD) has been developed in order to investigate detailed dynamic responses of designed compressor blades. Fluid domains are modeled using the computational grid system with local grid deforming and remeshing techniques. Reynolds-averaged Navier-Stokes equations with $\kappa-\varepsilon$ turbulence model are solved for unsteady flow problems of the rotating compressor model. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D compressor blade for fluid-structure interaction (FSI) problems. Detailed dynamic responses and instantaneous pressure contours on the blade surfaces considering flow-separation effects are presented to show the multi-physical phenomenon of the rotating compressor blade.

  • PDF