• 제목/요약/키워드: local vector

검색결과 520건 처리시간 0.023초

머신러닝을 사용한 서리 예측 연구 (A study on frost prediction model using machine learning)

  • 김효정;김삼용
    • 응용통계연구
    • /
    • 제35권4호
    • /
    • pp.543-552
    • /
    • 2022
  • 서리는 표면 근처의 공기의 이슬점 온도가 빙점 이하일 때 수증기가 승화, 응축되어 땅이나 물체에 얼게 되는 작은 얼음 결정체이다. 서리가 내리면 농작물이 직접 피해를 입는다. 농작물이 낮은 온도에 접촉하면 조직이 얼어서 세포막이나 엽록체가 딱딱해지고 파괴되거나 건조한 세포가 죽습니다. 2020년 7월, 세계 최대 커피 생산국인 브라질 미나스제라이스 주에 갑작스러운 영하의 날씨와 서리가 내려 지역 커피 나무의 약 30%가 피해를 입었다. 이로 인해 피해로 커피값이 크게 올랐고, 피해가 심각한 농가는 농작물이 회복되기까지 3년이 걸리기 때문에 2024년에야 커피를 생산할 수 있다. 본 논문에서는 심한 서리가 내리는 것을 방지하기 위해 기상청이 제공하는 서리 발생 데이터와 기상관측 데이터를 이용해 서리를 예측하려고 했다. 관측 지점의 고도 및 풍속, 온도, 습도, 강수량, 흐림 등의 기상 요인을 반영하여 모델을 구축하였다. XGB, SVM, Random Forest, MLP 모델을 사용하여 다양한 하이퍼 파라미터를 학습 데이터로 적용하여 각 모델에 가장 적합한 모델을 선택하였다. 마지막으로, 결과는 테스트 데이터에서 정확도(acc)와 중요 성공 지수(CSI)로 평가되었다. XGB는 90.4%의 acc와 64.4%의 CSI로 다른 모델에 비해 최고의 모델이었고, SVM은 89.7%의 acc와 61.2%의 CSI로 그 뒤를 이었다. 랜덤 포레스트와 MLP는 약 89%의 acc와 약 60%의 CSI로 비슷한 성능을 보였다.

터널 막장 3차원 지형모델 상에서의 불연속면 자동 매핑을 위한 딥러닝 기법 적용 방안 (Deep Learning Approach for Automatic Discontinuity Mapping on 3D Model of Tunnel Face)

  • 추엔 팜;신휴성
    • 터널과지하공간
    • /
    • 제33권6호
    • /
    • pp.508-518
    • /
    • 2023
  • 이 논문은 LiDAR 스캔 또는 사진측량 기술에 의해 재구성된 3D 디지털 모델을 기반으로 터널 벽면의 불연속면을 자동으로 매핑하는 새로운 접근 방식을 제안한다. 본 제안에서는 U-Net이라 불리는 딥러닝 시맨틱 영역분할 모델을 사용하며, 터널 막장면의 3D 지형 모델에서 불연속면 영역을 식별해 낸다. 제안된 딥러닝 모델은 투영된 RGB 이미지, 면의 깊이 이미지 및 국부적인 면의 표면 속성 이미지(즉, 법선 벡터 및 곡률 이미지)를 포함한 다양한 정보를 종합 학습하여 기본 3차원 이미지에서 불연속면 영역을 효과적으로 분할한다. 이후 영역분할 결과는 면의 깊이 맵과 투영 행렬을 사용하여 3D 모델로 다시 투영시키고, 3D 공간 내에서 불연속면의 위치 및 범위를 정확하게 표현한다. 영역분할 모델의 성능은 영역 분할된 결과를 해당 지면 실측 값과 비교함으로써 평가하였으며, IoU(intersection-over-union) 값이 약 0.8 정도로 나타나 영역분할 결과의 높은 정확성을 확인하였다. 여전히 학습데이터가 제한적 이었음에도 불구하고, 제안 기법은 3D 모델의 점군 데이터를 불연속면의 유사군으로 그룹화하기 위해 전 막장면의 법선 벡터와 클러스터링과 같은 비지도 학습기반 알고리즘에만 의존하던 기존 접근 방식의 한계의 극복 가능성을 보여주었다.

중고령 노인의 개인적 가치에 따른 라이프스타일 분류: 머신러닝을 활용한 상대적 중요도 분석 (Identifying Personal Values Influencing the Lifestyle of Older Adults: Insights From Relative Importance Analysis Using Machine Learning)

  • 임승주;박지혁
    • 재활치료과학
    • /
    • 제13권2호
    • /
    • pp.69-84
    • /
    • 2024
  • 목적 : 노인의 건강한 삶의 방식으로서 라이프스타일에 대한 연구가 증가하고 있다. 라이프스타일이 개개인의 가치와 삶의 태도를 반영하는 개념임에도 불구하고, 아직까지 개인의 어떠한 가치가 라이프스타일을 건강하게 유도하는지 파악한 연구는 부족한 실정이다. 이에 본 연구는 노인의 라이프스타일 유형을 두 가지로 분류하고, 머신러닝을 활용하여 어떠한 개인적 가치가 건강한 라이프스타일에 우선적으로 작용하는지 파악하고자 한다. 연구방법 : 본 연구는 지역사회에 거주하는 55세 이상 중고령 노인 300명을 대상으로 횡단 연구를 수행하였다. 라이프스타일은 Yonsei Lifestyle Profile-Active, Balanced, Connected, Diverse (YLP-ABCD) 응답을 사용하여 잠재프로파일 분석을 통해 유형화하였다. 라이프스타일 유형을 예측하는 개인적 가치는 YLP-V (Values) 응답을 수집하여, 예측성능이 가장 높은 머신러닝 알고리즘을 선정한 후 상대적 중요도를 파악하였다. 결과 : 잠재프로파일 분석 결과, 라이프스타일은 건강한 라이프스타일 실천형(48.87%), 비실천형(51.13%)으로 분류되었다. 실천형에 속한 중고령 노인은 비실천형에 비해 사회관계가 활발한 특성을 나타내었다. 본 연구에 포함된 머신러닝 알고리즘 중 가장 우수한 성능을 보인 모델은 서포트 벡터 머신으로, 정확도 96%, Receiver Operating Characteristic (ROC) 영역 95%로 나타났다. 본 알고리즘을 바탕으로 개인적 가치의 상대적 중요도를 분석한 결과, 건강한 식단, 건강 매체, 여가활동, 건강 제품 및 머신러닝에 주의를 기울일수록, 해당 가치에 따라 중고령 노인은 건강한 라이프스타일을 실천하는 그룹에 속할 가능성이 큰 것으로 나타났다. 결론 : 본 연구는 중고령 노인의 사회적 관계망을 포함한 건강한 라이프스타일을 유도하기 위해, 건강 식단, 매체, 여가, 제품 및 습관에 대한 가치 향상을 중점적으로 다루는 종합적인 프로그램 및 서비스의 필요성을 시사한다.

선거(選擧)의 거시경제적(巨視經濟的) 충격(衝擊)과 파급효과(波及效果) (The Macroeconomic Impacts of Korean Elections and Their Future Consequences)

  • 심상달;이항용
    • KDI Journal of Economic Policy
    • /
    • 제14권1호
    • /
    • pp.147-165
    • /
    • 1992
  • 본고(本稿)는 선거가 선거기간을 전후해서 어떻게 경제에 충격을 주고 이러한 충격의 여파로 경제는 선거후에 어떻게 영향을 받는지를 "베이지안" 벡터자기회귀모형(自己回歸模型)을 이용하여 분석하였다. 계수(係數)를 수정하면서 선거기간에 대해 예측을 할 경우의 예측오차의 평균으로 선거의 충격효과를 계산해 보면 선거는 선거전, 선거분기 및 선거후분기에 본원통화(本源通貨), 물가(物價), 생산(生産), 이자율(利子率), 투자(投資) 등에 상당한 충격을 주는 것으로 나타났다. 과거의 선거(選擧), 특히 80년대 이후 선거중에는 대체로 현금통화(現金通貨) 및 본원통화(本源通貨)가 선거 기간중 증가하고 선거후 환수된다. 이에 따른 유동성(流動性)의 변화(變化)로 금리(金利)는 선거기간중 약간 하락하고 선거후 다시 증가하는 양상을 보였다. 선거기간중(選擧期間中) 생산(生産) 및 고용(雇傭)은 선거에 따른 운동원차출(運動員差出) 및 조업감소(操業減少) 등의 영향으로 감소하나, 선거후에는 선거중의 생산감소(生産減少)를 상쇄(相殺)할 만큼 증대(增大)하는 것으로 나타났다. 선거(選擧)에 따른 물가(物價)의 충격(衝擊)은 주로 선거전분기에 나타났다. 이러한 과거의 선거기간중의 양태가 1992년의 각 선거에서 되풀이되고 총선과 대통령선거가 실시될 경우를 가상해서 그 효과를 시산(試算)해 보면 선거(選擧)로 인한 상당한 유동성증대(流動性增大)가 본원통화를 중심으로 예상되는 가운데, 소비자물가(消費者物價)가 1992년중 약 2%포인트, 1993년에 2.5%포인트 상승할 것으로 나타났다. 반면 선거로 인한 소비증대(消費增大)나 생산감소(生産減少) 등의 효과는 상대적으로 작을 것으로 예상되는 한편, 자금흐름의 왜곡이 발생하여 유동성이 증가했음에도 불구하고 생산자금은 압박을 받게 되어 투자(投資)가 부진해질 것으로 나타났다. 또한 이러한 선거의 효과는 1992년중 지방자치단체장선거가 실시될 경우 크게 확대된다.

  • PDF

호흡기계암세포주에서 TNF-$\alpha$ 유전자의 이입이 항암제 감수성에 미치는 효과 (Effect of TNF-$\alpha$ Gene Transfer to Respiratory Cancer Cell Lines on Sensitivity to Anticancer drugs)

  • 모은경;이재호;이계영;유철규;김영환;한성구;심영수;최형석
    • Tuberculosis and Respiratory Diseases
    • /
    • 제42권3호
    • /
    • pp.302-313
    • /
    • 1995
  • 연구배경: 종양괴사인자(Tumor necrosis factor; TNF)는 다양한 생물학적인 작용을 가지며 종양 세포에 대한 세포 독성은 그 대표적인 기능중의 하나이다. TNF-$\alpha$는 생체외에서(in vitro) 몇몇 종양 세포주에 대하여 항암제, 특히 topoisomerase II targeted chemotherapeutic agent의 세포 독성 효과를 상승적으로 증가시키는 것이 알려져 있다. 최근 암세포에 대한 cytokine 유전자 요법에서 TNF는 중요한 대상으로 여겨지고 있으며, 유전자 이입에 의해 암조직이 TNF를 생성하게 될 경우 암 증식 억제 효과가 있음이 보고되고 있다. 연구자는 암세포에 TNF-$\alpha$ 유전자를 이입하여 자신이 TNF-$\alpha$를 생성하도록 형질을 변환시킨 암세포는 topoisomerase II 억제 항암제에 대한 김수성에 변화가 있을 것이라는 가설을 수립하였고 이를 검증하고자 본 연구를 수행하였다. 본 연구에서는 생체외로(in vitro) TNF-$\alpha$ 유전자를 이입하여 TNF-$\alpha$를 생성하는 암세포주에서 topoisomerase II targeted drug에 대한 항암제 감수성 효과가 모세포주에 비하여 증대될 수 있는지를 알아 보고자하였다. 방법: TNF-$\alpha$에 감수성을 보이는 것으로 알려진 인체 중피종 세포주인 NCI-H2058 세포주 및 생쥐의 섬유육종 세포주인 WEHI164 세포주와 인체 비소세포 폐암 세포주인 A549 세포주를 배양하여, 먼저 임상에서 흔히 폐암의 항암 화학 요법 치료에 널리 쓰이는 대표적인 topoisomerase II targeted chemotherapeutic drug인 etoposide(VP-16)와 doxorubicin(adriamycin)을 가하였을 때 관찰된 세포 독성을 MTT assay로 측정하고, 각 모세포주(parenta1 cell line)에 TNF-$\alpha$의 유전자를 이입시켜서 형절 변환한 세포주(transformed cell line)에 대하여 각각 동일한 항암제를 가하였을 때 관찰된 세포 독성의 정도를 같은 방법으로 측정하여, 그 결과를 비교 분석하였다. 또한 모세포주에 외부에서 TNF를 가하여 전처치한 후 동일한 항암제를 가하였을 때의 세포독성을 관찰하여 비교 분석하였다. 결과: H2058 세포주에서는 TNF-$\alpha$ 유전자를 이입한 세포주 topoisomerase II targeted drug을 가하였을 때, 항암제 감수성이 모세포주에 같은 항암제를 가하였을 때에 비하여 의미있게 증가함을 관찰할 수 있었으나(p<0.05), WEHI 세포주와 A549 세포주에 있어서는 TNF-$\alpha$ 유전자를 이입한 세포주에서 모세포주에 비하여 항암제 감수성이 증가하지는 않았다. 결론: TNF-$\alpha$ 유전자의 이입이 topoisomerase II targeted chemotherapeutic drug에 대한 항암제 감수성을 증가시키는 효과는 세포주에 따라 다양한 결과를 보이는 것을 알 수 있었으며, 적어도 선택된 특정 종류의 호흡기계 암세포에 있어서는 TNF-$\alpha$ 유전자의 이입으로 항암제 감수성(chemosensitivity)을 증가시킬 수 있을 것으로 사료된다.

  • PDF

머신러닝기반 범죄발생 위험지역 예측 (Predicting Crime Risky Area Using Machine Learning)

  • 허선영;김주영;문태헌
    • 한국지리정보학회지
    • /
    • 제21권4호
    • /
    • pp.64-80
    • /
    • 2018
  • 우리나라의 시민들은 범죄에 대한 일반적인 사항만을 알 수 있을 뿐, 자신이 범죄위험에 얼마나 노출되어 있는지를 파악하기 어렵다. 경찰의 입장에서도 범죄발생 지역을 예측할 수 있다면 경찰력이 부족한 상황에서 효율성 있게 범죄에 대처 가능할 것이지만 아직 우리나라에서는 예측시스템이 없고, 관련 연구도 매우 부족한 실정이다. 이에 본 연구에서는 범죄발생 위험지역 예측 자동화 시스템 개발의 첫 번째 단계로 빅데이터로 구축 가능한 범죄정보와 도시지역 자료를 바탕으로 머신러닝 방식을 통해 한국형 범죄발생 위험지역 예측 모형을 개발하고자 한다. 또한 시나리오를 가정하여 범죄발생 확률을 지도로 시각화함으로써 사용자의 이해도를 높이도록 하였다. 선행 연구 및 사례에서 범죄발생에 영향을 미치는 요인 중 빅데이터로 구축 가능한 범죄정보, 날씨정보(기온, 강수량, 풍속, 습도, 일조, 일사, 적설, 전운량), 지역정보(평균 건폐율, 평균 용적율, 평균 높이, 총 건축물수, 평균 공시지가, 평균 주거용도면적, 평균 지상층수)를 머신러닝에 활용할 수 있도록 데이터를 사전 처리하였다. 머신러닝 알고리즘으로서 지도학습 모형 중 다양한 분야에서 활용되며 정확도가 높다고 알려진 의사결정나무모형, 랜덤포레스트모형, Support Vector Machine(SVM)모형을 활용하여 범죄 예측 모형을 구축하고 비교 분석하였다. 그 결과 평균 제곱근 오차(Root Mean Square Error, RMSE)가 낮아 예측력이 높은 의사결정나무모형을 최적모형으로 선정하였다. 이를 바탕으로 가장 빈번하게 발생하는 절도와 폭력범죄를 대상으로 시나리오를 작성하여 범죄 발생 위험지역을 예측한 결과, 사례도시 J시는 위험지역이 3가지 패턴으로 발생하는 것으로 나타났으며, 각각 발생확률을 3 등급으로 구분하여 $250{\times}250m$ 단위의 지도형태로 시각화할 수 있었다. 본 연구는 향후 자동화 시스템으로 개발하여 시시각각으로 변하는 도시 상황에 따라 실시간으로 예측 결과를 시각화하여 제공함으로써 보다 범죄로부터 안전한 도시환경 조성에 기여하고자 한다.

잠긴수제가 설치된 만곡수로에서의 이차류 거동 수치모의 (Numerical modeling of secondary flow behavior in a meandering channel with submerged vanes)

  • 이정섭;박상덕;최철희;백중철
    • 한국수자원학회논문집
    • /
    • 제52권10호
    • /
    • pp.743-752
    • /
    • 2019
  • 만곡수로에서의 흐름은 나선형 운동 형태의 이차류가 지배적이며, 이로 인해 일반적으로 만곡 외측을 따라 침식 현상이 발생하게 된다. 이러한 이차류를 약화시키기 위해서 보통 만곡수로 외측을 따라서 수제와 같은 수공구조물을 설치한다. 이 연구에서는 OpenFOAM 오프소스 소프트웨어를 토대로 난류 해석을 위한 하이브리드 RANS/LES 기법과 자유수면 해석을 위한 VoF기법을 이용한 3차원 수치모의를 통해서 $90^{\circ}$ 만곡수로에 설치된 잠긴수제가 후루드수가 0.43인 조건에서 이차류의 발달에 미치는 영향을 분석하였다. 시간과 공간에 대해서 2차 정확도의 유한체적법을 이용하여 수치모의를 수행하였으며, 수치해석 결과는 실험결과와 비교하여 수치모의의 정확도를 평가하였다. 잠긴수제가 설치된 경우의 수치모의 결과를 흐름방향 유속 분포와 횡방향 순환 유속벡터장을 중심으로 수리실험 관측값들과 비교할 때 수치모의 결과는 수리실험에서 관측된 주요 이차류 흐름 거동과 현상들을 대부분 양호한 정확도로 잘 재현하는 것으로 나타났다. 수치모의 결과를 비교해보면, 잠긴수제 설치로 인해서 만곡이 끝나는 단면 외측 하상부근에서의 유속은 약 평균유속의 1/3 정도 감소하는 반면에 수제 상단부에서의 전단층 발달에 따른 흐름 가속으로 자유수면 부근까지 유속이 증가하고 만곡 수충부에서는 수면 부근 유속이 약 20% 증가하는 것으로 나타났다. 결과적으로 잠긴수제는 만곡부에서 발생하는 이차류의 강도를 약화시켜 만곡부 외측 하상의 안정에 도움이 될 것으로 판단된다. 한편, 각 잠긴수제 전면부에서 말발굽와가 그리고 후면부에서는 후류가 형성되면서 수제 구조물 주변에서 강한 국부세굴이 발생하는 것으로 나타남으로, 국부세굴을 최소화할 수 있는 수제의 형상 및 배열에 대한 추가 연구가 요구된다.

머신러닝 기법을 활용한 터널 설계 시 시추공 내 암반분류에 관한 연구 (A study on the rock mass classification in boreholes for a tunnel design using machine learning algorithms)

  • 이제겸;최원혁;김양균;이승원
    • 한국터널지하공간학회 논문집
    • /
    • 제23권6호
    • /
    • pp.469-484
    • /
    • 2021
  • 터널 설계 시 지반조사를 통한 암반분류 결과는 공사기간 및 공사비 산출, 그리고 터널안정성 평가에 지대한 영향을 미친다. 국내에서 지금까지 완공된 3,526개소의 터널들의 설계 및 시공을 통해 관련 기술들은 지속적으로 발전되어 왔지만, 터널 설계 시 암질 및 암반등급을 보다 정확하게 평가하기 위한 방법에 대한 연구는 미미하여 평가자의 경험 및 주관에 따라 결과의 차이가 큰 경우가 적지 않다. 따라서 본 연구에서는 암석샘플에 대한 주관적 평가를 통한 기존의 인력에 의한 암반분류 대신, 최근 지반분야에서도 그 활용도가 급증하고 있는 머신러닝 알고리즘을 이용하여 시추조사에서 획득한 다양한 암석 및 암반정보를 분석하여 보다 신뢰성있는 RMR에 의한 암반분류 모델을 제시하고자 하였다. 국내 13개 터널을 대상으로 11개의 학습 인자(심도, 암종, RQD, 전기비저항, 일축압축강도, 탄성파 P파속도 및 S파 속도, 영률, 단위중량, 포아송비, RMR)를 선정하여 337개의 학습 데이터셋과 60개의 시험 데이터셋을 확보하였으며, 모델의 예측성능을 향상시키기 위해 6개의 머신러닝 알고리즘(DT, SVM, ANN, PCA & ANN, RF, XGBoost)과 각 알고리즘별 다양한 초매개변수(hyperparameter)를 적용하였다. 학습된 모델의 예측성능을 비교한 결과, DT 모델을 제외한 5개의 머신러닝 모델에서 시험데이터에 대한 RMR 평균절대오차 값이 8 미만으로 수렴되었으며, SVM 모델에서 가장 우수한 예측성능을 나타내었다. 본 연구를 통해 암반분류 예측에 대한 머신러닝 기법의 적용 가능성을 확인하였으며, 향후 다양한 데이터를 지속적으로 확보하여 예측모델의 성능을 향상시킨다면 보다 신뢰성 있는 암반 분류에 활용될 수 있을 것으로 기대된다.

수출보험이 국내 중소기업 및 대기업의 수출에 미치는 영향에 관한 연구 (A Study on the Effects of Export Insurance on the Exports of SMEs and Conglomerates)

  • 이동주
    • 무역학회지
    • /
    • 제42권2호
    • /
    • pp.145-174
    • /
    • 2017
  • 최근 계속되는 글로벌 경기 침체로 수출 여건이 악화됨에 따라 수출 주도형 소규모 개방경제인 우리나라는 수출이 감소하고 국내 경제 또한 침체가 지속되고 있다. 따라서 앞으로 수출증대를 통한 우리 경제의 지속적인 성장을 위해서는 수출보험과 같은 수출 지원제도의 유효성을 분석하여 수출확대를 위한 방안을 마련할 필요가 있다. 이에 본 연구에서는 수출보험이 국내 중소기업 및 대기업 수출에 미치는 효과를 살펴보기 위해 국내 중소기업 및 대기업 수출실적, 수출보험인수실적, 단기수출보험인수실적, 수출 상대가격지수(수출물가지수), 원/달러 환율, 국내경기 동행지수 등의 자료를 이용하여 시계열 분석을 실시하였다. 특히 벡터자기회귀모형(VAR 모형)을 통한 그랜저 인과관계 검정, VAR 모형 분석, 충격반응 분석, 분산분해 분석 등의 계량경제학적 분석 방법을 이용하여 수출보험이 국내 중소기업 및 대기업의 수출에 미치는 영향을 분석하였다. 첫째, 그랜저 인과관계 검정을 통해 대기업 수출은 국내경기 동행지수에, 국내경기 동행지수는 수출보험인수실적 및 단기수출보험인수실적에 선행하는 인과관계가 있는 것으로 나타났다. 둘째, VAR 모형 분석 결과 수출보험인수실적 및 수출물가지수의 경우 중소기업의 수출에는 부(-)의 영향을, 그리고 대기업 수출에는 정(+)의 영향을 주는 것으로 나타난 반면, 단기수출보험인수실적의 경우 중소기업의 수출에는 정(+)의 영향을, 그리고 대기업 수출에는 부(-)의 영향을 주는 것으로 나타났다. 셋째, 충격반응분석 및 분산분해 분석 결과 대기업 수출은 중소기업에 비해 단기수출보험인수실적에 크게 영향을 받는 것으로 나타났으며, 수출보험인수실적 역시 중소기업 보다 대기업 수출에 미치는 효과가 더 큰 것으로 나타났다. 결론적으로 수출보험의 경우 중소기업보다 대기업 수출 증대에 더 긍정적인 영향을 주고 있는 것으로 나타났으며, 향후 중소기업의 중장기적 수출보험 활성화를 위해서는 지자체별로 중소기업에 대한 수출보험 지원을 확대할 필요가 있는 것으로 분석되었다. 본 연구는 수출보험이 국내 중소기업 및 대기업의 수출에 미치는 영향을 분석하고 효율적인 수출보험정책을 수립하기 위한 정책적 시사점을 제시하고자 하였다는 점에서 그 의의가 있다. 향후 후속연구에서는 수출보험의 수출지원 효과를 보다 정밀하게 측정하기 위해 산업별 보험 인수실적에 따른 수출실적에 대한 시계열 분석을 실시할 필요가 있을 것이다.

  • PDF

스마트폰 다종 데이터를 활용한 딥러닝 기반의 사용자 동행 상태 인식 (A Deep Learning Based Approach to Recognizing Accompanying Status of Smartphone Users Using Multimodal Data)

  • 김길호;최상우;채문정;박희웅;이재홍;박종헌
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.163-177
    • /
    • 2019
  • 스마트폰이 널리 보급되고 현대인들의 생활 속에 깊이 자리 잡으면서, 스마트폰에서 수집된 다종 데이터를 바탕으로 사용자 개인의 행동을 인식하고자 하는 연구가 활발히 진행되고 있다. 그러나 타인과의 상호작용 행동 인식에 대한 연구는 아직까지 상대적으로 미진하였다. 기존 상호작용 행동 인식 연구에서는 오디오, 블루투스, 와이파이 등의 데이터를 사용하였으나, 이들은 사용자 사생활 침해 가능성이 높으며 단시간 내에 충분한 양의 데이터를 수집하기 어렵다는 한계가 있다. 반면 가속도, 자기장, 자이로스코프 등의 물리 센서의 경우 사생활 침해 가능성이 낮으며 단시간 내에 충분한 양의 데이터를 수집할 수 있다. 본 연구에서는 이러한 점에 주목하여, 스마트폰 상의 다종 물리 센서 데이터만을 활용, 딥러닝 모델에 기반을 둔 사용자의 동행 상태 인식 방법론을 제안한다. 사용자의 동행 여부 및 대화 여부를 분류하는 동행 상태 분류 모델은 컨볼루션 신경망과 장단기 기억 순환 신경망이 혼합된 구조를 지닌다. 먼저 스마트폰의 다종 물리 센서에서 수집한 데이터에 존재하는 타임 스태프의 차이를 상쇄하고, 정규화를 수행하여 시간에 따른 시퀀스 데이터 형태로 변환함으로써 동행 상태분류 모델의 입력 데이터를 생성한다. 이는 컨볼루션 신경망에 입력되며, 데이터의 시간적 국부 의존성이 반영된 요인 지도를 출력한다. 장단기 기억 순환 신경망은 요인 지도를 입력받아 시간에 따른 순차적 연관 관계를 학습하며, 동행 상태 분류를 위한 요인을 추출하고 소프트맥스 분류기에서 이에 기반한 최종적인 분류를 수행한다. 자체 제작한 스마트폰 애플리케이션을 배포하여 실험 데이터를 수집하였으며, 이를 활용하여 제안한 방법론을 평가하였다. 최적의 파라미터를 설정하여 동행 상태 분류 모델을 학습하고 평가한 결과, 동행 여부와 대화 여부를 각각 98.74%, 98.83%의 높은 정확도로 분류하였다.