• 제목/요약/키워드: local time of ascending node

검색결과 8건 처리시간 0.021초

VARIATIONS OF THE LOCAL TIME OF ASCENDING NODE FOR THE INITIAL INCLINATIONS OF THE KOMPSAT

  • Lee, Byoung-Sun
    • Journal of Astronomy and Space Sciences
    • /
    • 제16권2호
    • /
    • pp.167-176
    • /
    • 1999
  • The optimal initial inclination for minimizing the variation of the Local Time of Ascending Node(LTAN) during the three year mission of the KOMPSAT is investigated. At first, the analytical equation for the inclination change by the Sun is derived and the optimal initial inclination by analytical method is derived. Then the analytically derived optimal inclination is checked by the numerical orbit propagation with including all major perturbations. Four different cases of the initial orbital elements are used for monitoring the LTAN variation of the LTAN. Therefore, a new optimal initial inclination by numerical orbit propagation for the KOMPSAT is found. In addition, the variations of the mean and osculating semi-major axis are investigated with the different atmospheric density values. The mean eccentricity vs. argument of perigee diagram for the frozen orbit is obtained.

  • PDF

태양동기위성의 고도감소에 의한 승교점 통과시각의 변화 (VARIATION OF LOCAL TIME OF ASCENDING NODE DUE TO THE ALTITUDE DECAY OF SUN-SYNCHRONOUS SATELLITE)

  • 이병선;황유라;김해연;윤재철;김해동;김재훈
    • Journal of Astronomy and Space Sciences
    • /
    • 제23권2호
    • /
    • pp.127-134
    • /
    • 2006
  • 지구대기에 의해서 태양동기위성의 고도가 감소될 때 초기 궤도경사각에 따른 승교점 통과시각의 변화를 분석하였다. 이를 위해 고도 500km인 위성에 대해서 3년간 궤도예측 연구를 수행하였으며 초기 승교점 통과시각은 06시, 09시, 12시, 15시, 그리고 18시로 하였다. 위성의 고도 감소와 초기 승교점 통과시각에 따라서 각각 다른 궤도경사각의 변화를 얻을 수 있었으며 승교점 통과시각 역시 달라짐을 알 수 있었다. 이를 이용하면 궤도조정을 위한 추력기가 탑재되지 않은 태양동기위성에 있어서 임무기간 동안 승교점 통과시각의 변화를 최소로 하는 초기 궤도요소를 산출할 수 있다.

SUN INTERFEREN PREDICTIONS FOR THE KOMPSAT TT&C STATION

  • Lee, Byoung-Sun;Lee, Jeong-Sook
    • Journal of Astronomy and Space Sciences
    • /
    • 제14권1호
    • /
    • pp.158-165
    • /
    • 1997
  • The Sun interference event predictions for the KOMPSAT TT&C station were performed to analyze the frequency of the event and the impact on the TT&C link. The KOMPSAT orbit was propagated including only J2 geopotential term for maintaining the Sun-synchronism and no other perturbations were included. Local time of ascending node of the KOMPSAT satellite was set to 10h50m00s. The TT&C station was assumed to locate in Taejon and have 9 meter antenna for S-band link. One year of simulation from 1999/07/01 were performed out of 3 year of mission lifetime of KOMPSAT satellite. Total four times of Sun interference events were occurred during 1 year of simulation and those lasted about 50 seconds altogether. The C/N degradation of the TT&C system was calculated about 4dB. The Sun interference event of 50 seconds of year are 0.0076 percents of the S-band contact time when the 30 minute of contact time is assumed in a day.

  • PDF

POST LAUNCH MISSION ANALYSIS FOR THE KOMPSAT-1

  • Lee, Byoung-Sun;Lee, Jeong-Sook;Kim, Jong-Ah
    • Journal of Astronomy and Space Sciences
    • /
    • 제17권2호
    • /
    • pp.285-294
    • /
    • 2000
  • The post-launch mission analysis of the KOMPSAT-1 spacecraft was carried out. The injection accuracy of the Taurus launch vehicle was analyzed by comparison of the target and the realized orbit parameters. The tracking station contact analysis was also performed based on the state vectors applied at the day of launch. The offset angles between the predicted orbit and realized orbit were calculated for various tracking stations. The injection orbit parameters of the KOMPSAT-1 were analyzed for the possible options in Launch and Early Orbit Phase(LEOP) operations. Variations of the Local Time of Ascending Node(LTAN) were also obtained.

  • PDF

Launch and Early Orbit Phase Simulations by using the KOMPSAT Simulator

  • Lee, Sanguk;Park, Wan-Sik;Lee, Byoung-sun;Lee, Ho-Jin;Park, Hanjun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1999년도 제14차 학술회의논문집
    • /
    • pp.33-36
    • /
    • 1999
  • The KOMPSAT, which is scheduled to be launched by Taurus launch vehicle in late November of 1999, will be in a sun-synchronous orbit with an altitude of 685km, eccentricity of 0.001, inclination of 98deg and local time of ascending node of 10:50 a.m. Electronics and Telecommunications Research Institute and Daewoo Heavy Industry had jointly developed a KOMPSAT Simulator as a component of the KOMPSAT Mission Control Element. The MCE had been delivered to Korea Aerospace Research Institute for the KOMPSAT ground operation. It is being used for training of KOMPSAT ground station personnel. Each of satellite subsystems and space environment were mathematically modeled in the simulator. To verify the overall function of KOMPSAT simulator, a Launch and Early Orbit Phase(LEOP) operation simulations have been performed. The simulator had been verified through various tests such as functional level test, subsystem test, interface test, system test, and acceptance test. In this paper, simulation results for LEOP operations to verify flight software adapted into simulator, satellite subsystem models and environment models are presented.

  • PDF

HAUSAT-2 위성의 전력계 개발 및 검증 (Development and Validation of HAUSAT-2 Nanosatellite EPS)

  • 김동운;장영근;문병영
    • 한국항공우주학회지
    • /
    • 제34권4호
    • /
    • pp.89-101
    • /
    • 2006
  • 본 논문에서는 HAUSAT-2 전력계의 설계와 각 모드별로 에너지 평형 해석을 통한 전력계 설계의 타당성을 검증하였다. 태양전지판은 GaAs 셀을 사용하였고 디지털 방식의 최대 전력 추적기를 채택하였다. 배터리 팩은 4개의 Li-Ion 셀로 구성하였고 최대 전력 추적기와 배터리 충전 조절기로 배터리 충전 기능을 구현하였다. 전력 제어기는 DC-DC 변환기로 요구되는 전압을 출력하고 상용 IC 및 MOSFET으로 이루어진 전력 분배기가 서브시스템 및 탑재체에 전력을 분배시킨다. 전력생성 분석은 다양한 승교점 지방시(LTAN)를 가지는 궤도를 고려하여 수행하였으며, 이 중 HAUSAT-2의 임무 수행에 적합한 궤도를 선정하여 모드별 전력 사항을 반영하여 에너지 평형 해석(EBA)을 진행하였다.

Energy Balance and Power Performance Analysis for Satellite in Low Earth Orbit

  • Jang, Sung-Soo;Kim, Sung-Hoon;Lee, Sang-Ryool;Choi, Jae-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • 제27권3호
    • /
    • pp.253-262
    • /
    • 2010
  • The electrical power system (EPS) of Korean satellites in low-earth-orbit is designed to achieve energy balance based on a one-orbit mission scenario. This means that the battery has to be fully charged at the end of a one-orbit mission. To provide the maximum solar array (SA) power generation, the peak power tracking (PPT) method has been developed for a spacecraft power system. The PPT is operated by a software algorithm, which tracks the peak power of the SA and ensures the battery is fully charged in one orbit. The EPS should be designed to avoid the stress of electronics in order to handle the main bus power from the SA power. This paper summarizes the results of energy balance to achieve optimal power sizing and the actual trend analysis of EPS performance in orbit. It describes the results of required power for the satellite operation in the worst power conditions at the end-of-life, the methods and input data used in the energy balance, and the case study of energy balance analyses for the normal operation in orbit. Both 10:35 AM and 10:50 AM crossing times are considered, so the power performance in each case is analyzed with the satellite roll maneuver according to the payload operation concept. In addition, the data transmission to the Korea Ground Station during eclipse is investigated at the local-time-ascending-node of 11:00 AM to assess the greatest battery depth-of-discharge in normal operation.