• Title/Summary/Keyword: local search algorithm

Search Result 447, Processing Time 0.038 seconds

A Daily Scheduling of Generator Maintenance using Fuzzy Set Theory combined with Genetic Algorithm (퍼지 집합이론과 유전알고리즘을 이용한 일간 발전기 보수유지계획의 수립)

  • Oh, Tae-Gon;Choi, Jae-Seok;Baek, Ung-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.7
    • /
    • pp.1314-1323
    • /
    • 2011
  • The maintenance of generating units is implicitly related with power system reliability and has a tremendous bearing on the operation of the power system. A technique using a fuzzy search method which is based on fuzzy multi-criteria function has been proposed for GMS (generator maintenance scheduling) in order to consider multi-objective function. In this study, a new technique using combined fuzzy set theory and genetic algorithm(GA) is proposed for generator maintenance scheduling. The genetic algorithm(GA) is expected to make up for that fuzzy search method might search the local solution. The effectiveness of the proposed approach is demonstrated by the simulation results on a practical size test systems.

Two-Phase Distributed Evolutionary algorithm with Inherited Age Concept

  • Kang, Young-Hoon;Z. Zenn Bien
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.101.4-101
    • /
    • 2001
  • Evolutionary algorithm has been receiving a remarkable attention due to the model-free and population-based parallel search attributes and much successful results are coming out. However, there are some problems in most of the evolutionary algorithms. The critical one is that it takes much time or large generations to search the global optimum in case of the objective function with multimodality. Another problem is that it usually cannot search all the local optima because it pays great attention to the search of the global optimum. In addition, if the objective function has several global optima, it may be very difficult to search all the global optima due to the global characteristics of the selection methods. To cope with these problems, at first we propose a preprocessing process, grid-filtering algorithm(GFA), and propose a new distributed evolutionary ...

  • PDF

Size Optimization of Space Trusses Based on the Harmony Search Heuristic Algorithm (Harmony Search 알고리즘을 이용한 입체트러스의 단면최적화)

  • Lee Kang-Seok;Kim Jeong-Hee;Choi Chang-Sik;Lee Li-Hyung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.359-366
    • /
    • 2005
  • Most engineering optimization are based on numerical linear and nonlinear programming methods that require substantial gradient information and usually seek to improve the solution in the neighborhood of a starting point. These algorithm, however, reveal a limited approach to complicated real-world optimization problems. If there is more than one local optimum in the problem, the result may depend on the selection of an initial point, and the obtained optimal solution may not necessarily be the global optimum. This paper describes a new harmony search(HS) meta-heuristic algorithm-based approach for structural size optimization problems with continuous design variables. This recently developed HS algorithm is conceptualized using the musical process of searching for a perfect state of harmony. It uses a stochastic random search instead of a gradient search so that derivative information is unnecessary. Two classical space truss optimization problems are presented to demonstrate the effectiveness and robustness of the HS algorithm. The results indicate that the proposed approach is a powerful search and optimization technique that may yield better solutions to structural engineering problems than those obtained using current algorithms.

  • PDF

A New Image Clustering Method Based on the Fuzzy Harmony Search Algorithm and Fourier Transform

  • Bekkouche, Ibtissem;Fizazi, Hadria
    • Journal of Information Processing Systems
    • /
    • v.12 no.4
    • /
    • pp.555-576
    • /
    • 2016
  • In the conventional clustering algorithms, an object could be assigned to only one group. However, this is sometimes not the case in reality, there are cases where the data do not belong to one group. As against, the fuzzy clustering takes into consideration the degree of fuzzy membership of each pixel relative to different classes. In order to overcome some shortcoming with traditional clustering methods, such as slow convergence and their sensitivity to initialization values, we have used the Harmony Search algorithm. It is based on the population metaheuristic algorithm, imitating the musical improvisation process. The major thrust of this algorithm lies in its ability to integrate the key components of population-based methods and local search-based methods in a simple optimization model. We propose in this paper a new unsupervised clustering method called the Fuzzy Harmony Search-Fourier Transform (FHS-FT). It is based on hybridization fuzzy clustering and the harmony search algorithm to increase its exploitation process and to further improve the generated solution, while the Fourier transform to increase the size of the image's data. The results show that the proposed method is able to provide viable solutions as compared to previous work.

Extraction of Shape Information of Cost Function Using Dynamic Encoding Algorithm for Searches(DEAS) (최적화기법인 DEAS를 이용한 비용함수의 형상정보 추출)

  • Kim, Jong-Wook;Park, Young-Su;Kim, Tae-Gyu;Kim, Sang-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.8
    • /
    • pp.790-797
    • /
    • 2007
  • This paper proposes a new measure of cost function ruggedness in local optimization with DEAS. DEAS is a computational optimization method developed since 2002 and has been applied to various engineering fields with success. Since DEAS is a recent optimization method which is rarely introduced in Korean, this paper first provides a brief overview and description of DEAS. In minimizing cost function with this non-gradient method, information on function shape measured automatically will enhance search capability. Considering the search strategies of DEAS are well designed with binary matrix structures, analysis of search behaviors will produce beneficial shape information. This paper deals with a simple quadratic function contained with various magnitudes of noise, and DEAS finds local minimum yielding ruggedness measure of given cost function. The proposed shape information will be directly used in improving DEAS performance in future work.

Aircraft delivery vehicle with fuzzy time window for improving search algorithm

  • C.C. Hung;T. Nguyen;C.Y. Hsieh
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.5
    • /
    • pp.393-418
    • /
    • 2023
  • Drones are increasingly used in logistics delivery due to their low cost, high-speed and straight-line flight. Considering the small cargo capacity, limited endurance and other factors, this paper optimized the pickup and delivery vehicle routing problem with time windows in the mode of "truck+drone". A mixed integer programming model with the objective of minimizing transportation cost was proposed and an improved adaptive large neighborhood search algorithm is designed to solve the problem. In this algorithm, the performance of the algorithm is improved by designing various efficient destroy operators and repair operators based on the characteristics of the model and introducing a simulated annealing strategy to avoid falling into local optimum solutions. The effectiveness of the model and the algorithm is verified through the numerical experiments, and the impact of the "truck+drone" on the route cost is analyzed, the result of this study provides a decision basis for the route planning of "truck+drone" mode delivery.

Fast Block-Matching Motion Estimation Using Constrained Diamond Search Algorithm (구속조건을 적용한 다이아몬드 탐색 알고리즘에 의한 고속블록정합움직임추정)

  • 홍성용
    • Journal of the Korea Society of Computer and Information
    • /
    • v.8 no.4
    • /
    • pp.13-20
    • /
    • 2003
  • Based on the studies on the motion vector distributions estimated on the image sequences, we proposed constrained diamond search (DS) algorithm for fast block-matching motion estimation. By considering the fact that motion vectors are searched within the 2 pixels distance in vertically and horizontally on average, we confirmed that DS algorithm achieves close performance on error ratio and requires less computation compared with new three-step search (NTSS) algorithm. Also, by applying displaced frame difference (DFD) to DS algorithm, we reduced the computational loads needed to estimate the motion vectors within the stable block that do not have motions. And we reduced the possibilities falling into the local minima in the course of estimation of motion vectors by applying DFD to DS algorithm. So, we knew that proposed constrained DS algorithm achieved enhanced results as aspects of error ratio and the number of search points to be necessary compared with conventional DS algorithm, four step search (FSS) algorithm, and block-based gradient-descent search algorithm

  • PDF

Efficient Path Search Method using Ant Colony System in Traveling Salesman Problem (순회 판매원 문제에서 개미 군락 시스템을 이용한 효율적인 경로 탐색)

  • 홍석미;이영아;정태충
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.9
    • /
    • pp.862-866
    • /
    • 2003
  • Traveling Salesman Problem(TSP) is a combinational optimization problem, Genetic Algorithm(GA) and Lin-Kernighan(LK) Heuristic[1]that is Local Search Heuristic are one of the most commonly used methods to resolve TSP. In this paper, we introduce ACS(Ant Colony System) Algorithm as another approach to solve TSP and propose a new pheromone updating method. ACS uses pheromone information between cities in the Process where many ants make a tour, and is a method to find a optimal solution through recursive tour creation process. At the stage of Global Updating of ACS method, it updates pheromone of edges belonging to global best tour of created all edge. But we perform once more pheromone update about created all edges before global updating rule of original ACS is applied. At this process, we use the frequency of occurrence of each edges to update pheromone. We could offer stochastic value by pheromone about each edges, giving all edges' occurrence frequency as weight about Pheromone. This finds an optimal solution faster than existing ACS algorithm and prevent a local optima using more edges in next time search.

Optimum Design for Rotor-bearing System Using Advanced Genetic Algorithm (향상된 유전알고리듬을 이용한 로터 베어링 시스템의 최적설계)

  • Kim, Young-Chan;Choi, Seong-Pil;Yang, Bo-Suk
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.533-538
    • /
    • 2001
  • This paper describes a combinational method to compute the global and local solutions of optimization problems. The present hybrid algorithm uses both a genetic algorithm and a local concentrate search algorithm (e. g simplex method). The hybrid algorithm is not only faster than the standard genetic algorithm but also supplies a more accurate solution. In addition, this algorithm can find the global and local optimum solutions. The present algorithm can be supplied to minimize the resonance response (Q factor) and to yield the critical speeds as far from the operating speed as possible. These factors play very important roles in designing a rotor-bearing system under the dynamic behavior constraint. In the present work, the shaft diameter, the bearing length, and clearance are used as the design variables.

  • PDF

Study on Improvement of Convergence in Harmony Search Algorithms (Harmony Search 알고리즘의 수렴성 개선에 관한 연구)

  • Lee, Sang-Kyung;Ko, Kwang-Enu;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.401-406
    • /
    • 2011
  • In order to solve a complex optimization problem more efficiently than traditional approaches, various meta-heuristic algorithms such as genetic algorithm, ant-colony algorithm, and harmony search algorithm have been extensively researched. Compared with other meta-heuristic algorithm, harmony search algorithm shows a better result to resolve the complex optimization issues. Harmony search algorithm is inspired by the improvision process of musician for most suitable harmony. In general, the performance of harmony search algorithm is determined by the value of harmony memory considering rate, and pitch adjust rate. In this paper, modified harmony search algorithm is proposed in order to derive best harmony. If the optimal solution of a specific problem can not be found for a certain period of time, a part of original harmony memory is updated as the selected suitable harmonies. Experimental results using test function demonstrate that the updated harmony memory can induce the approximation of reliable optimal solution in the short iteration, because of a few change of fitness.