• 제목/요약/키워드: local packing dimension

검색결과 13건 처리시간 0.017초

SPECTRAL CLASSES AND THE PARAMETER DISTRIBUTION SET

  • BAEK, IN-SOO
    • 대한수학회논문집
    • /
    • 제30권3호
    • /
    • pp.221-226
    • /
    • 2015
  • The natural projection of a parameter lower (upper) distribution set for a self-similar measure on a self-similar set satisfying the open set condition is the cylindrical lower or upper local dimension set for the Legendre self-similarmeasure which is derived from the self-similar measure and the self-similar set.

DIMENSIONS OF THE SUBSETS IN THE SPECTRAL CLASSES OF A SELF-SIMILAR CANTOR SET

  • Baek, In-Soo
    • Journal of applied mathematics & informatics
    • /
    • 제26권3_4호
    • /
    • pp.733-738
    • /
    • 2008
  • Using an information of dimensions of divergence points, we give full information of dimensions of the completely decomposed class of the lower(upper) distribution sets of a self-similar Cantor set. Further using a relationship between the distribution sets and the subsets generated by the lower(upper) local dimensions of a self-similar measure, we give full information of dimensions of the subsets by the local dimensions.

  • PDF

SINGULARITY ORDER OF THE RIESZ-NÁGY-TAKÁCS FUNCTION

  • Baek, In-Soo
    • 대한수학회논문집
    • /
    • 제30권1호
    • /
    • pp.7-21
    • /
    • 2015
  • We give the characterization of H$\ddot{o}$lder differentiability points and non-differentiability points of the Riesz-N$\acute{a}$gy-Tak$\acute{a}$cs (RNT) singular function ${\Psi}_{a,p}$ satisfying ${\Psi}_{a,p}(a)=p$. It generalizes recent multifractal and metric number theoretical results associated with the RNT function. Besides, we classify the singular functions using the singularity order deduced from the H$\ddot{o}$lder derivative giving the information that a strictly increasing smooth function having a positive derivative Lebesgue almost everywhere has the singularity order 1 and the RNT function ${\Psi}_{a,p}$ has the singularity order $g(a,p)=\frac{a{\log}p+(1-a){\log}(1-p)}{a{\log}a+(1-a){\log}(1-a)}{\geq}1$.