• Title/Summary/Keyword: local oscillator

Search Result 193, Processing Time 0.037 seconds

16-QAM Demodulator Design of Broadband Wireless Local Loop (광대역 무선가입자망용 16-QAM 복조기 설계)

  • 김남일;김응배;이창석
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.81-84
    • /
    • 2000
  • This paper has been studied the design of 16-QAM demodulator used in broadband wireless local loop subscriber station. In B-WLL systems, transmission signal experience the inter symbol interference(ISI) due to multipath, frequency offset of RF/IF local oscillator and phase offset. In this paper, we discuss the effective data recovery algorithm for 16-QAM demodulator to compensate the distorted signal from ISI, frequency offset and phase offset.

  • PDF

Performance Analysis of the UHF RFID Reader with the Range Correlation Effects of the Phase Noise (위상 잡음의 거리 상관 효과에 따른 UHF RFID 리더의 성능 분석)

  • Jang, Byung-Jun;Kang, Min-Soo;Lim, Jae-Bong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.2
    • /
    • pp.152-160
    • /
    • 2008
  • In this paper, we analyze the performance of a direct-conversion UHF RFID reader with the range correlation effects of the phase noise. Since a UHF RFIB system uses the same oscillator to generate the transmitted carrier and the local oscillation, the periodic interference and phase noise reduction effects occur due to time delay between two signals. Through exact theory and simulation, we verify how to cancel the periodic interference phenomena using I/Q diversity combining technique. And, we analyze phase noise reduction effects due to range correlation as a function of the tag-reader distance and the offset frequency Using these results, we simulate the symbol-error-rate performance with respect to phase noise with and without range correation effects. We show that the phase noise of the local oscillator has little effect on the symbol-error-rate performance because of phase noise reduction by range correlation.

A Study on Error Compensation for Quadrature Modulator in Frequency Direct Conversion Method (주파수 직접변환방식의 직교변조부 에러보정에 관한 연구)

  • 백주기;이일규;방성일;진년강
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.4
    • /
    • pp.542-551
    • /
    • 1998
  • In this study, a method of error compensation for channel gain imbalance, phase imbalance and local oscillator leakage in the modulator of frequency direct conversion is suggested. The compensation of channel imbalance can be carried out by using the received power after transmitting test signal. By applying this method, the phase imbalance conversion with frequency can be easily compensated since this method is rarely affected by the transmission channel. It is confirmed that the algorithm proposed in this study(iteration coefficient=11) converges faster than conventional algorithm(iteration coefficient=43). From the numerical results, the DC-offset, channel gain, phase imbalance compensation coefficient and iteration number converges into($f_1$=0.0199999, $f_2$=-0.050001, $C_{22}$=0.9133, $C_{12}$=-0.0524, N=13) when the local oscillator leakage is not considered. However, it converges into($f_1$=-0.02, $f_2$=-2.2476, $C_{22}$=0.9133, $C_{12}$=-0.0524, N=16) when the local oscillator leakage is considered.

  • PDF

A Study on Design and Fabrication on X-Band Oscillator for radar system (레이더 시스템용 X-Band 발진기의 설계 및 제작에 관한 연구)

  • 손병문;강중순
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.7
    • /
    • pp.1210-1218
    • /
    • 2001
  • In this paper, A X-band voltage-controlled hair-pin resonator oscillator(VCHRO) is able to a local oscillator or a signal source in transmitter/receiver of a microwave communication system for mobile radar, is designed and fabricated In order to apply mobile radar system is used the hair-pin resonator stronger on shock or vibration than the dielectric resonator, and also, in order to improvement the phase noise and output power is used a system of serial feedback format A hair-pin resonator was simulated by momentum method of HP ADS and then a oscillator circuit was designed that operates at 10.525 GHz by nonlinear method in harmonic balance simulation. The HRO generated output power of 6.93 dBm at 10.525 GHz, phase noise of -57.74 dBc at 100 kHz offset from carrier and the 2'nd harmonic was suppressed -23.90 dBc.

  • PDF

Design of Ku-Band Phase Locked Harmonic Oscillator (Ku-Band용 위상 고정 고조파 발진기 설계)

  • Lee Kun-Joon;Kim Young-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.1 s.92
    • /
    • pp.49-55
    • /
    • 2005
  • In this paper, the phase locked harmonic oscillator(PLHO) using the analog PLL(Phase Locked Loop) is designed and implemented for a wireless LAN system. The harmonic oscillator is consisted of a ring resonator, a varactor diode and a PLL circuit. Because the fundamental fiequency of 8.5 GHz is used as the feedback signal for the PLL and the 2nd harmonic of 17.0 GHz is used as the output, a analog frequency divider for the phase comparison in the PLL system can be omitted. For the simple PLL circuit, the SPD(Sampling Phase Detector) as a phase comparator is used. The output power of the phase locked harmonic oscillator is 2.23 dBm at 17 GHz. The fundamental and 3rd harmonic suppressions are -31.5 dBc and -29.0 dBc, respectively. The measured phase noise characteristics are -87.6 dBc/Hz and -95.4 dBc/Hz at the of offset frequency of 1 kHz and 10 kHz from the carrier, respectively.

Design and Fabrication of a X-band Voltage Control Dielectric Resonator Oscillator with The Low Phase Noise (낮은 위상잡음을 갖는 X-band 전압제어 유전체 공진형 발진기의 설계 및 제작)

  • 박창현;최병하
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.5
    • /
    • pp.69-76
    • /
    • 2004
  • In this paper, a VCDRO (Voltage Control Dielectric Resonator Oscillator) with low phase noise for X-band application has been designed and fabricated. A low noise and low flicker noise MESFET and a high Q dielectric resonator were selected to obtain good phase noise Performance. Also, a varactor diode having high Q, qualify factor was used to reduce the loading effects and a big Gamma of diode was chosen for linearity of frequency over voltage tuning range. The fabricated circuits was simulated with circuit design tools, ADS to provide the optimum performances. As the measured results of fabricated oscillator, the output power was 5.8 ㏈m at center frequency 12.05㎓ and harmonic suppression -30㏈c, phase noise -114 ㏈c at 100 KHz offset frequency, respectively, and the frequency tuning range as the function of valtage applied to varactor diode was 15.2 MHz and its power variation with frequency was 0.2 ㏈. This oscillator could be available to a local oscillator in X-band.

Development of EQM(Engineering Qualified Model) Local Oscillator far Ka-band Satellite Transponder (Ka-band위성 중계기용 국부발진기의 우주인증모델(EQM) 개발)

  • 류근관;이문규;염인복;이성팔
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.4
    • /
    • pp.335-344
    • /
    • 2004
  • A low phase noise EQM(Engineering Qualified Model) LO(Local Oscillator) has been developed for Ka-band satellite transponder. A VCDRO(Voltage Controlled Dielectric Resonator Oscillator) is also designed using a high impedance inverter coupled with dielectric resonator to improve the phase noise performances out of the loop bandwidth. The mechanical analysis fur housing and the thermal analysis fur circuit board are achieved. This EQM LO is applied to Ka-band satellite transponder of EQM level after environmental experiments for space application. The LO has the harmonic suppression characteristics above 52 ㏈c and requires low power consumption under 1.3 watts. The phase noise characteristics are exhibited as -101.33 ㏈c/㎐ at 10 ㎑ offset frequency and -114.33 ㏈c/㎐ at 100 ㎑ offset frequency, with the output power of 14.0 ㏈m${\pm}$0.17 ㏈ over the temperature range of -15∼+65$^{\circ}C$.

Development of Virtual Target Signal Generator for Verifying the Shipborne Tracking Radar Performance (함정용 추적레이더 성능 검증을 위한 모의표적신호발생장치 개발)

  • Yi, Hui-Min;Son, Jae-Hyun;Na, Young-Jin;Kim, Dong-Hawn
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.66-74
    • /
    • 2012
  • The virtual target signal generator was developed to verify the shipborne tracking radar performance. It was used to DRFM(Digital RF Memory) method to generate the virtual moving targets. The target signal includes Doppler shift and RCS according to the target motion. And the signal generator can make jamming signal and clutter to test shipborne radar performance at real environmental condition. This paper described the functional diagram and the hardware configuration items to meet the test requirements for the tracking radar. And it showed the critical design points for the sub-systems. The signal generator which was developed in this paper shared the operational information of the radar with the radar command and control part. To test the frequency agility of the radar, it had the local oscillator which could do high speed frequency switching according to radar information. By communicating between the signal generator and the radar command and control part, the local oscillator of signal generator could be controlled every pulse. It reduced the instantaneous bandwidth of signal generator and minimized the spurious. So it lowered the probability of generating wrong targets.