• Title/Summary/Keyword: local modification

Search Result 262, Processing Time 0.026 seconds

Improvement Method of the Sound Insulation Performance of Aluminium Extruded Panels by the Unit Structure Modification (단위 구조 변경에 의한 알루미늄 압출재의 차음성능 개선)

  • Lee, Hyun-Woo;Kim, seock-Hyun;Kim, Jeong-Tae;Song, Dal-Ho
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.457-462
    • /
    • 2009
  • In a high speed train, aluminium extruded panel is widely used in floor, side wall and roof structures for high bending stiffness and weight reduction. However, with some inevitable reasons, aluminium extruded panel shows inferior sound insulation performance compared with the flat panel having same weight. Especially, occurrence of local resonance modes in the particular frequency band, is one of the main reason in the deterioration of the sound insulation performance. Local resonance modes are generated in the structure which consists of periodic unit structure, such as the aluminium extruded panel. The local resonance frequency is determined by the specification of the unit structure. In this study, we predict the local resonance frequency band on the aluminium extruded panel used for the high speed train, and investigate how the design modification in the unit structure influences the local resonance frequency band and panel bending stiffness. The purpose of the study is to provide the design information for the effective unit structure in order to improve the sound insulation performance of the aluminium extruded panel.

  • PDF

Local Vibration Modes of Corrugated Panels for Rail Road Vehicles (철도 차량용 주름 판재의 국부진동 모드)

  • 김석현;장호식
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.527-534
    • /
    • 2000
  • Characteristics of local vibration modes of a corrugated panel are investigated by finite element analysis and modal testing. Structural modification model in the corrugation is proposed to increase the resonance frequency. This model decreases the fall by the local resonance in the transmission loss of the corrugated pallet and improves sound insulation performance. Damping effect of tile foam filled ill tile core cavity is also estimated by experiment The results of tile study offer useful information how to predict the severe local resonances in corrugations and how to prevent their undesirable effect ell the sound insulation and the vibration transmission.

  • PDF

Adaptive local histogram modification method for dynamic range compression of infrared images

  • Joung, Jihye
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.6
    • /
    • pp.73-80
    • /
    • 2019
  • In this paper, we propose an effective dynamic range compression (DRC) method of infrared images. A histogram of infrared images has narrow dynamic range compared to visible images. Hence, it is important to apply the effective DRC algorithm for high performance of an infrared image analysis. The proposed algorithm for high dynamic range divides an infrared image into the overlapped blocks and calculates Shannon's entropy of overlapped blocks. After that, we classify each block according to the value of entropy and apply adaptive histogram modification method each overlapped block. We make an intensity mapping function through result of the adaptive histogram modification method which is using standard-deviation and maximum value of histogram of classified blocks. Lastly, in order to reduce block artifact, we apply hanning window to the overlapped blocks. In experimental result, the proposed method showed better performance of dynamic range compression compared to previous algorithms.

Modification of Turbulent Boundary Layer Flow by Local Wall Vibration (국소 벽면 진동에 의한 난류경계층 유동 변화)

  • Kim, Chul-Kyu;Jeon, Woo-Pyung;Park, Jin-Il;Kim, Dong-Joo;Choi, Haecheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.9
    • /
    • pp.1255-1263
    • /
    • 2000
  • In this study, the modification of turbulent boundary layer flow by local wall vibration is investigated. The wall is locally vibrated using a wall deformation actuator, which moves up and down at the frequencies of 100Hz and 50Hz. Simultaneous measurements of the streamwise velocities in the spanwise direction are performed at several wall-normal and streamwise locations using an in-house multi-channel hot wire anemometer and a spanwise hot-wire-probe rake. The mean velocity is reduced in most places due to the wall vibration and its reduced amount becomes small as flow goes downstream. Interestingly, the mean velocity is found to increase very near the wall and near the actuator. This is due to the motion induced by the streamwise vortices which are generated by the downward motion of the actuator. In case of the streamwise velocity fluctuations, their magnitude increases as compared to the unperturbed turbulent boundary layer, and the increased amount becomes small as the flow moves downstream. The modified flow field at the forcing frequency of 50Hz is not much different from that of 100Hz, except the reduced amount of modification.

Modification of Solid Models Independent of Design Features (디자인 피쳐에 의존하지 않는 솔리드 모델의 수정)

  • Woo, Yoon-Hwan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.2
    • /
    • pp.131-138
    • /
    • 2008
  • With the advancements of the Internet and CAD data translation techniques, more CAD models are transferred from a CAD system to another through the network and interoperability is getting a common word in the CAD industry. However, when a CAD model is translated for an incompatible system into a neutral format such as STEP or IGES, its precious feature information is lost. When this feature information is lost, the advantage of feature based modeling is not valid any longer, and modification for the model is purely dependent on geometric and topological manipulations. However, the capabilities of the existing methods to modify these feature-independent models are limited as the modification involves a topological change in the model. To address this issue, we present a volumetric method to modify the solid models in neutral format. First, this method selectively decomposes the solid model to separate the portion of interest called feature volume. Next, the designer modifies the feature volume without concerning a topological change. Finally, the feature volume is united with the original solid model to complete the modification process. The results of test cases are presented to attest the usefulness of the proposed method.

Analytical model for the composite effect of coupled beams with discrete shear connectors

  • Zheng, Tianxin;Lu, Yong;Usmani, Asif
    • Structural Engineering and Mechanics
    • /
    • v.52 no.2
    • /
    • pp.369-389
    • /
    • 2014
  • Two-layer coupled or composite beams with discrete shear connectors of finite dimensions are commonly encountered in pre-fabricated construction. This paper presents the development of simplified closed-form solutions for such type of coupled beams for practical applications. A new coupled beam element is proposed to represent the unconnected segments in the beam. General solutions are then developed by an inductive method based on the results from the finite element analysis. A modification is subsequently considered to account for the effect of local deformations. For typical cases where the local deformation is primarily concerned about its distribution over the depth of the coupled beam, empirical modification factors are developed based on parametric calculations using finite element models. The developed analytical method for the coupled beams in question is simple, sufficiently accurate, and suitable for quick calculation in engineering practice.

Optimized Local Relocation for VLSI Circuit Modification Using Mean-Field Annealing

  • Karimi, Gholam Reza;Verki, Ahmad Azizi;Mirzakuchaki, Sattar
    • ETRI Journal
    • /
    • v.32 no.6
    • /
    • pp.932-939
    • /
    • 2010
  • In this paper, a fast migration method is proposed. Our method executes local relocation on a model placement where an additional module is added to it for modification with a minimum number of displacements. This method is based on mean-field annealing (MFA), which produces a solution as reliable as a previously used method called simulated annealing. The proposed method requires substantially less time and hardware, and it is less sensitive to the initial and final temperatures. In addition, the solution runtime is mostly independent of the size and complexity of the input model placement. Our proposed MFA algorithm is optimized by enabling module rotation inside an energy function called permissible distances preservation energy. This, in turn, allows more options in moving the engaged modules. Finally, a three-phase cooling process governs the convergence of problem variables called neurons or spins.

A vision algorithm for finding the centers of steam generator tubes using the generalized symmetry transform (일반화 대칭변환을 이용한 원전 증기발생기 전열관 중심인식 비젼 알고리즘)

  • 장태인;곽귀일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1367-1370
    • /
    • 1997
  • This paper presents a vision algorithm for finding the centers of steam generator tubes using the generalized symmetry transform, which is used for ECT(Eddy Current Test) of steam generator tubes in nuclear power plants. The geometrical properties of the image representing steam generator tubes shows that they have amost circular or somewhat elliptic appearances and each tube has strong symmetry about its center. So we apply the generalized symmetry transform to finding centers of steam geneator tubes. But applying the generalized symmetry transform itself without any modification gives difficulties in obtaining the exact centers of steam generator tubes. But applying the generalized symmetry transform itself without any modification gives difficulties in obtaining the exact centers of tubes due to the shadow effect generated by the local light installed inside steam generator. Therefore we make the generalized symmetry transform modified, which uses a modified phase weight function in getting the symmetry magnitude in order to overcome the misleading effect by the local light. The experimental results indicate that the proposed vision algorithm efficiently recongnizes centers of steam generator tubes.

  • PDF

On the Volumetric Balanced Variation of Ship Forms (체적 밸런스 선형변환방법에 대한 연구)

  • Kim, Hyun-Cheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.1-7
    • /
    • 2013
  • This paper aims at contributing to the field of ship design by introducing new systematic variation methods for ship hull forms. Hull form design is generally carried out in two stages. The first is the global variation considering the sectional area curve. Because the geometric properties of a sectional area curve have a decisive effect on the global hydrodynamic properties of ships, the design of a sectional area curve that satisfies various global design conditions, e.g., the displacement, longitudinal center of buoyancy, etc., is important in the initial hull form design stage. The second stage involves the local design of section forms. Section forms affect the local hydrodynamic properties, e.g., the local pressure in the fore- and aftbody. This paper deals with a new method for the systematic variation of sectional area curves. The longitudinal volume distribution of a ship depends on the sectional area curve, which can geometrically be controlled using parametric variation and a variation that uses the modification function. Based on these methods, we suggest a more generalized method in connection with the derivation of the lines for a new design compared to those for similar ships. This is the so-called the volumetric balanced variation (VOB) method for ship forms using a B-spline modification function and an optimization technique. In this paper the global geometric properties of hull forms are totally controlled by the form parameters. We describe the new method and some application examples in detail.

Hull Form Optimization using Parametric Modification Functions and Global Optimization (전역 최적화기법과 파라메트릭 변환함수를 이용한 선형 최적화)

  • Kim, Hee-Jung;Chun, Ho-Hwan;An, Nam-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.590-600
    • /
    • 2008
  • This paper concerns the development of a designer friendly hull form parameterization and its coupling with advanced global optimization algorithms. As optimization algorithms, we choose the Partial Swarm Optimization(PSO) recently introduced to solve global optimization problems. Most general-purpose optimization softwares used in industrial applications use gradient-based algorithms, mainly due to their convergence properties and computational efficiency when a relatively few number of variables are considered. However, local optimizers have difficulties with local minima and non-connected feasible regions. Because of the increase of computer power and of the development of efficient Global Optimization (GO) methods, in recent years nongradient-based algorithms have attracted much attention. Furthermore, GO methods provide several advantages over local approaches. In the paper, the derivative-based SQP and the GO approach PSO are compared with their relative performances in solving some typical ship design optimization problem focusing on their effectiveness and efficiency.