• Title/Summary/Keyword: local mode shape

Search Result 56, Processing Time 0.02 seconds

Modal Analysis and Experiment of a Simply-supported Beam with Non-uniform Cross Sections (불균일 단면을 갖는 단순지지 보의 모달해석 및 실험)

  • Kim, In-Woo;Ryu, Bong-Jo;Kim, Youngshik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8654-8664
    • /
    • 2015
  • Beam-type structures with non-uniform cross sections are widely used in mechanical, architectural, and civil engineering fields. This paper deals with dynamic characteristics and vibration problems. Governing equations are first derived by using local coordinates. Their solutions are then assumed by using Galerkin's mode summation method. Bisection method is also applied in solving the determinant of the matrix which can provide natural frequencies. Whereas finite element methods adopt admissible functions satisfying only geometric boundary condition, in this study we apply Galerkin's mode summation method which uses eigen-functions satisfying both governing equations and boundary conditions. Modal analysis and experimental tests are finally performed using simply-supported beams with four different non-uniform cross-sections. Our analytical results then show good agreement with experimental ones.

Design Enhancement to Avoid Radar Mast Resonance in Large Ship using Design of Experiments (실험계획법을 이용한 대형 선박용 레이더 마스트의 공진회피 설계)

  • Park, Jun Hyeong;Lee, Daeyong;Yang, Jung-Wook;Song, Chang Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.50-60
    • /
    • 2019
  • Recently, problems with excessive vibration of the radar masts of large bulk carriers and crude oil tankers have frequently been reported. This paper explores a design method to avoid the resonance of a radar mast installed on a large ship using various design of experiment (DOE) methods. A local vibration test was performed during an actual sea trial to determine the excitation sources of the vibration related to the resonant frequency of the radar mast. DOE methods such as the orthogonal array (OA) and Latin hypercube design (LHD) methods were used to analyze the Pareto effects on the radar mast vibration. In these DOE methods, the main vibration performances such as the natural frequency and weight of the radar mast were set as responses, while the shape and thickness of the main structural members of the radar mast were set as design factors. From the DOE-based Pareto effect results, we selected the significant structural members with the greatest influence on the vibration characteristics of the radar mast. Full factorial design (FFD) was applied to verify the Pareto effect results of the OA and LHD methods. The design of the main structural members of the radar mast to avoid resonance was reviewed, and a normal mode analysis was performed for each design using the finite element method. Based on the results of this normal mode analysis, we selected a design case that could avoid the resonance from the major excitation sources. In addition, a modal test was performed on the determined design to verify the normal mode analysis results.

Flapwise and non-local bending vibration of the rotating beams

  • Mohammadnejad, Mehrdad;Saffari, Hamed
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.229-244
    • /
    • 2019
  • Weak form integral equations are developed to investigate the flapwise bending vibration of the rotating beams. Rayleigh and Eringen nonlocal elasticity theories are used to investigate the rotatory inertia and Size-dependency effects on the flapwise bending vibration of the rotating cantilever beams, respectively. Through repetitive integrations, the governing partial differential equations are converted into weak form integral equations. The novelty of the presented approach is the approximation of the mode shape function by a power series which converts the equations into solvable one. Substitution of the power series into weak form integral equations results in a system of linear algebraic equations. The natural frequencies are determined by calculation of the non-trivial solution for resulting system of equations. Accuracy of the proposed method is verified through several numerical examples, in which the influence of the geometry properties, rotatory inertia, rotational speed, taper ratio and size-dependency are investigated on the natural frequencies of the rotating beam. Application of the weak form integral equations has made the solution simpler and shorter in the mathematical process. Presented relations can be used to obtain a close-form solution for quick calculation of the first five natural frequencies of the beams with flapwise vibration and non-local effects. The analysis results are compared with those obtained from other available published references.

Hysteretic performance of a novel composite wall panel consisted of a light-steel frame and aerated concrete blocks

  • Wang, Xiaoping;Li, Fan;Wan, Liangdong;Li, Tao
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.861-871
    • /
    • 2021
  • This study aims at investigating the hysteretic performance of a novel composite wall panel fabricated by infilling aerated concrete blocks into a novel light-steel frame used for low-rise residential buildings. The novel light-steel frame is consisted of two thin-wall rectangular hollow section columns and a truss-beam assembled using patented U-shape connectors. Two bare light-steel frames and two composite wall panels have been tested to failure under horizontal cyclic loading. Hysteretic curves, lateral resistance and stiffness of four specimens have been investigated and analyzed. Based on the testing results, it is found that the masonry infill can significantly increase the lateral resistance and stiffness of the novel light-steel frame, about 2.3~3 and 21.2~31.5 times, respectively. Failure mode of the light-steel frame is local yielding of the column. For the composite wall panel, firstly, masonry infill is crushed, subsequently, local yielding may occur at the column if loading continues. Hysteretic curve of the composite wall panel obtained is not plump, implying a poor energy dissipation capacity. However, the light-steel frame of the composite wall panel can dissipate more energy after the masonry infill is crushed. Therefore, the composite wall panel has a much higher energy dissipation capacity compared to the bare light-steel frame.

Improving buckling response of the square steel tube by using steel foam

  • Moradi, Mohammadreza;Arwade, Sanjay R.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.6
    • /
    • pp.1017-1036
    • /
    • 2014
  • Steel tubes have an efficient shape with large second moment of inertia relative to their light weight. One of the main problems of these members is their low buckling resistance caused from having thin walls. In this study, steel foams with high strength over weight ratio is used to fill the steel tube to beneficially modify the response of steel tubes. The linear eigenvalue and plastic collapse FE analysis is done on steel foam filled tube under pure compression and three point bending simulation. It is shown that steel foam improves the maximum strength and the ability of energy absorption of the steel tubes significantly. Different configurations with different volume of steel foam and composite behavior is investigated. It is demonstrated that there are some optimum configurations with more efficient behavior. If composite action between steel foam and steel increases, the strength of the element will improve, in a way that, the failure mode change from local buckling to yielding.

Lens-Holder Design in Pick-up Actuator using Sensitivity Analysis (감도해석을 이용한 광픽업 엑추에이터의 렌즈홀더 설계)

  • 이동주;이경택;김철진;박노철;양현석;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.712-717
    • /
    • 2001
  • In order to modify flexible mode frequencies, finite element analysis is applied for a lens-holder in pick-up actuator. Several design parameters like shape and local dimension of a lens-holder were selected adequately and sensitivities of the design variables for vibration modes were obtained by FE analysis and this result was used for updating FE model. A sensitivity matrix between the natural frequencies and the design variables was calculated by finite difference method. By comparing the calculated natural frequencies with target frequencies, modification of the design variables was acquired and used for improving FE model. Calculated natural frequencies after several iterations by FE analysis coincided with target frequencies and the errors between them were minimized.

  • PDF

Dynamic Analysis of HVAC Case for Passenger Car (승용차용 HVAC Case의 동특성 해석)

  • Yook, Ji-Yong;Cha, Yong-Kil;Lim, Jung-Su;Kim, Kwang-Il;Kang, Sung-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.1
    • /
    • pp.101-108
    • /
    • 2009
  • This paper presents dynamic analysis of HVAC(heating ventilation & air conditioning) heater case which consists of heater and evaporator unit for passenger car. To analyze the dynamic characteristics of HVAC heater case, finite element model which consists of shell elements is constructed for modal analysis and experimental modal analysis has been conducted. Finite element analysis results are compared with experimental results to evaluate of validity of finite element model. After identifying mode shape and natural frequency of HVAC heater case, local stiffness of HVAC case is evaluated through point mobility using finite element analysis and experiment.

Fault Detection Method for Beam Structure Using Modified Laplacian and Natural Frequencies (수정 라플라시안 및 고유주파수를 이용한 보 구조물의 결함탐지기법)

  • Lee, Jong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.611-617
    • /
    • 2018
  • The application of health monitoring, including a fault detection technique, is needed to secure the structural safety of large structures. A 2-step crack identification method for detecting the crack location and size of the beam structure is presented. First, a crack occurrence region was estimated using the modified Laplacian operator for the strain mode shape obtained from the distributed local strain data. The crack location and size were then identified based on the natural frequencies obtained from the acceleration data and the neural network technique for the pre-estimated crack occurrence region. The natural frequencies of a cracked beam were calculated based on an equivalent bending stiffness induced by the energy method, and used to generate the training patterns of the neural network. An experimental study was carried out on an aluminum cantilever beam to verify the present method for crack identification. Cracks were produced on the beam, and free vibration tests were performed. A crack occurrence region was estimated using the modified Laplacian operator for the strain mode shape, and the crack location and size were assessed using the natural frequencies and neural network technique. The identified crack occurrence region agrees well with the exact one, and the accuracy of the estimation results for the crack location and size could be enhanced considerably for 3 damage cases. The presented method could be applied effectively to the structural health monitoring of large structures.

FIV Characteristics of U-Tubes Due to Relocation of the Tube Supprot Plates (튜브 지지판 재배치에 따른 유체유발진동 특성 해석)

  • Kim, Hyung-Jin;Ryu, Ki-Wahn;Park, Chi-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.312-317
    • /
    • 2005
  • Fluid-elastic instability and turbulence excitation for an under developing steam generator are investigated numerically. The stability ratio and the amplitude of turbulence excitation are obtained by using the PIAT (Program for Integrity Assessment of Steam Generator Tube) code from the information on the thermal-hydraulic data of the steam generator. The aspect ratio, the ratio between the height of U-tube from the upper most tube support plate (h) and the width of two vertical portion of U-tube (w), is defined for geometric parameter study. Several aspect ratios with relocation of tube support plates are adopted to study the effects on the mode shapes and characteristics of flow-induced vibration. When the aspect ratio exceeds value of 1, most of the mode shapes at low frequency are generated at the top of U-tube. It makes very high value of the stability ratio and the amplitude of turbulent excitation as well. We can consider that the local mode shape at the upper side of U-tube will develop the wear phenomena between the tube and the anti-vibration bars such as vertical, horizontal, and diagonal strips. It turns out that the aspect ratio reveals very important parameter for the design stage of the steam generator. The appropriate value of the aspect ratio should be specified and applied.

  • PDF

FIV Analysis of SG Tubes for Various TSP Locations (튜브 지지판 재배치에 따른 유체유발진동 특성 해석)

  • Kim, Hyung-Jin;Park, Chi-Yong;Park, Myoung-Ho;Ryu, Ki-Whan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.9 s.102
    • /
    • pp.1009-1015
    • /
    • 2005
  • Fluid-elastic instability and turbulence excitation for an under developing steam generator are investigated numerically. The stability ratio and the amplitude of turbulence excitation are obtained by using the $PIAT^{(R)}$ (program for integrity assessment of steam generator tube) code from the information on the thermal-hydraulic data of the steam generator. The aspect ratio, the ratio between the height of U-tube from the upper most tube support Plate (h) and the width of two vertical portion of U-tube (w), is defined for geometric parameter study. Several aspect ratios with relocation of tube support plates are adopted to study the effects on the mode shapes and characteristics of flow-induced vibration. When the aspect ratio exceeds value of 1, most of the mode shapes at low frequency are generated at the top of U-tube. It makes very high value of the stability ratio and the amplitude of turbulent excitation as well. We can consider that the local mode shape at the upper side of U-tube will develop the wear phenomena between the tube and the anti-nitration bars such as vortical, horizontal, and diagonal strips. It turns out that the aspect ratio reveals very important parameter for the design stage of the steam generator. The appropriate value of the aspect ratio should be specified and applied.