• Title/Summary/Keyword: local maximum synchrosqueezing

Search Result 2, Processing Time 0.015 seconds

A combined spline chirplet transform and local maximum synchrosqueezing technique for structural instantaneous frequency identification

  • Ping-Ping Yuan;Zhou-Jie Zhao;Ya Liu;Zhong-Xiang Shen
    • Smart Structures and Systems
    • /
    • v.33 no.3
    • /
    • pp.201-215
    • /
    • 2024
  • Spline chirplet transform and local maximum synchrosqueezing are introduced to present a novel structural instantaneous frequency (IF) identification method named local maximum synchrosqueezing spline chirplet transform (LMSSSCT). Namely spline chirplet transform (SCT), a transform is firstly introduced based on classic chirplet transform and spline interpolated kernel function. Applying SCT in association with local maximum synchrosqueezing, the LMSSSCT is then proposed. The index of accuracy and Rényi entropy show that LMSSSCT outperforms the other time-frequency analysis (TFA) methods in processing analytical signals, especially in the presence of noise. Numerical examples of a Duffing nonlinear system with single degree of freedom and a two-layer shear frame structure with time-varying stiffness are used to verify the effectiveness of structural IF identification. Moreover, a nonlinear supported beam structure test is conducted and the LMSSSCT is utilized for structural IF identification. Numerical simulation and experimental results demonstrate that the presented LMSSSCT can effectively identify the IFs of nonlinear structures and time-varying structures with good accuracy and stability.

Time-varying characteristics analysis of vehicle-bridge interaction system using an accurate time-frequency method

  • Tian-Li Huang;Lei Tang;Chen-Lu Zhan;Xu-Qiang Shang;Ning-Bo Wang;Wei-Xin Ren
    • Smart Structures and Systems
    • /
    • v.33 no.2
    • /
    • pp.145-163
    • /
    • 2024
  • The evaluation of dynamic characteristics of bridges under operational traffic loads is a crucial aspect of bridge structural health monitoring. In the vehicle-bridge interaction (VBI) system, the vibration responses of bridge exhibit time-varying characteristics. To address this issue, an accurate time-frequency analysis method that combines the autoregressive power spectrum based empirical wavelet transform (AR-EWT) and local maximum synchrosqueezing transform (LMSST) is proposed to identify the time-varying instantaneous frequencies (IFs) of the bridge in the VBI system. The AR-EWT method decomposes the vibration response of the bridge into mono-component signals. Then, LMSST is employed to identify the IFs of each mono-component signal. The AR-EWT combined with the LMSST method (AR-EWT+LMSST) can resolve the problem that LMSST cannot effectively identify the multi-component signals with weak amplitude components. The proposed AR-EWT+LMSST method is compared with some advanced time-frequency analysis techniques such as synchrosqueezing transform (SST), synchroextracting transform (SET), and LMSST. The results demonstrate that the proposed AR-EWT+LMSST method can improve the accuracy of identified IFs. The effectiveness and applicability of the proposed method are validated through a multi-component signal, a VBI numerical model with a four-degree-of-freedom half-car, and a VBI model experiment. The effect of vehicle characteristics, vehicle speed, and road surface roughness on the identified IFs of bridge are investigated.