• Title/Summary/Keyword: local linear regression

Search Result 176, Processing Time 0.02 seconds

Efficiency of Aggregate Data in Non-linear Regression

  • Huh, Jib
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.2
    • /
    • pp.327-336
    • /
    • 2001
  • This work concerns estimating a regression function, which is not linear, using aggregate data. In much of the empirical research, data are aggregated for various reasons before statistical analysis. In a traditional parametric approach, a linear estimation of the non-linear function with aggregate data can result in unstable estimators of the parameters. More serious consequence is the bias in the estimation of the non-linear function. The approach we employ is the kernel regression smoothing. We describe the conditions when the aggregate data can be used to estimate the regression function efficiently. Numerical examples will illustrate our findings.

  • PDF

Detection of Change-Points by Local Linear Regression Fit;

  • Kim, Jong Tae;Choi, Hyemi;Huh, Jib
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.1
    • /
    • pp.31-38
    • /
    • 2003
  • A simple method is proposed to detect the number of change points and test the location and size of multiple change points with jump discontinuities in an otherwise smooth regression model. The proposed estimators are based on a local linear regression fit by the comparison of left and right one-side kernel smoother. Our proposed methodology is explained and applied to real data and simulated data.

Comparison of Local and Global Fitting for Exercise BP Estimation Using PTT (PTT를 이용한 운동 중 혈압 예측을 위한 Local과 Global Fitting의 비교)

  • Kim, Chul-Seung;Moon, Ki-Wook;Eom, Gwang-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2265-2267
    • /
    • 2007
  • The purpose of this work is to compare the local fitting and global fitting approaches while applying regression model to the PTT-BP data for the prediction of exercise blood pressures. We used linear and nonlinear regression models to represent the PTT-BP relationship during exercise. PTT-BP data were acquired both under resting state and also after cycling exercise with several load conditions. PTT was calculated as the time between R-peak of ECG and the peak of differential photo-plethysmogram. For the identification of the regression models, we used local fitting which used only the resting state data and global fitting which used the whole region of data including exercise BP. The results showed that the global fitting was superior to the local fitting in terms of the coefficient of determination and the RMS (root mean square) error between the experimental and estimated BP. The nonlinear regression model which used global fitting showed slightly better performance than the linear one (no significant difference). We confirmed that the wide-range of data is required for the regression model to appropriately predict the exercise BP.

Comparison of MLR and SVR Based Linear and Nonlinear Regressions - Compensation for Wind Speed Prediction (MLR 및 SVR 기반 선형과 비선형회귀분석의 비교 - 풍속 예측 보정)

  • Kim, Junbong;Oh, Seungchul;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.851-856
    • /
    • 2016
  • Wind speed is heavily fluctuated and quite local than other weather elements. It is difficult to improve the accuracy of prediction only in a numerical prediction model. An MOS (Model Output Statistics) technique is used to correct the systematic errors of the model using a statistical data analysis. The Most of previous MOS has used a linear regression model for weather prediction, but it is hard to manage an irregular nature of prediction of wind speed. In order to solve the problem, a nonlinear regression method using SVR (Support Vector Regression) is introduced for a development of MOS for wind speed prediction. Experiments are performed for KLAPS (Korea Local Analysis and Prediction System) re-analysis data from 2007 to 2013 year for Jeju Island and Busan area in South Korea. The MLR and SVR based linear and nonlinear methods are compared to each other for prediction accuracy of wind speed. Also, the comparison experiments are executed for the variation in the number of UM elements.

Assessing Local Influence in Linear Regression Models with Second-Order Autoregressive Error Structure (이차 자기회구오차 구조를 갖는 선형회귀모형의 자료영향도 평가)

  • Kim, Soon-Kwi;Lee, Young-Hoon;Jeong, Dong-Bin
    • Journal of Korean Society for Quality Management
    • /
    • v.28 no.2
    • /
    • pp.57-69
    • /
    • 2000
  • This paper discusses the local influence approach to the linear regression models with AR(2) errors. Diagnostics for the linear regression models with AR(2) errors are proposed and developed when simultaneous perturbations of the response vector are allowed- That is, the direction of maximum curvature of local influence analysis is obtained by studying the curvature of a surface associated with the overall discrepancy measure.

  • PDF

Robust Interpolation Method for Adapting to Sparse Design in Nonparametric Regression (선형보간법에 의한 자료 희소성 해결방안의 문제와 대안)

  • Park, Dong-Ryeon
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.3
    • /
    • pp.561-571
    • /
    • 2007
  • Local linear regression estimator is the most widely used nonparametric regression estimator which has a number of advantages over the traditional kernel estimators. It is well known that local linear estimator can produce erratic result in sparse regions in the realization of the design and the interpolation method of Hall and Turlach (1997) is the very efficient way to resolve this problem. However, it has been never pointed out that Hall and Turlach's interpolation method is very sensitive to outliers. In this paper, we propose the robust version of the interpolation method for adapting to sparse design. The finite sample properties of the method is compared with Hall and Turlach's method by the simulation study.

A Role of Local Influence in Selecting Regressors

  • Kim, Myung-Geun
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.2
    • /
    • pp.267-272
    • /
    • 2006
  • A procedure for selecting regressors in the linear regression model is suggested using local influence approach. Under an appropriate perturbation scheme, the effect of perturbation of regressors on the profile log-likelihood displacement is assessed for variable selection. A numerical example is provided for illustration.

Diagnostics for Regression with Finite-Order Autoregressive Disturbances

  • Lee, Young-Hoon;Jeong, Dong-Bin;Kim, Soon-Kwi
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.2
    • /
    • pp.237-250
    • /
    • 2002
  • Motivated by Cook's (1986) assessment of local influence by investigating the curvature of a surface associated with the overall discrepancy measure, this paper extends this idea to the linear regression model with AR(p) disturbances. Diagnostic for the linear regression models with AR(p) disturbances are discussed when simultaneous perturbations of the response vector are allowed. For the derived criterion, numerical studies demonstrate routine application of this work.

On Convex Combination of Local Constant Regression

  • Mun, Jung-Won;Kim, Choong-Rak
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.2
    • /
    • pp.379-387
    • /
    • 2006
  • Local polynomial regression is widely used because of good properties such as such as the adaptation to various types of designs, the absence of boundary effects and minimax efficiency Choi and Hall (1998) proposed an estimator of regression function using a convex combination idea. They showed that a convex combination of three local linear estimators produces an estimator which has the same order of bias as a local cubic smoother. In this paper we suggest another estimator of regression function based on a convex combination of five local constant estimates. It turned out that this estimator has the same order of bias as a local cubic smoother.

Robust Nonparametric Regression Method using Rank Transformation

    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.2
    • /
    • pp.574-574
    • /
    • 2000
  • Consider the problem of estimating regression function from a set of data which is contaminated by a long-tailed error distribution. The linear smoother is a kind of a local weighted average of response, so it is not robust against outliers. The kernel M-smoother and the lowess attain robustness against outliers by down-weighting outliers. However, the kernel M-smoother and the lowess requires the iteration for computing the robustness weights, and as Wang and Scott(1994) pointed out, the requirement of iteration is not a desirable property. In this article, we propose the robust nonparametic regression method which does not require the iteration. Robustness can be achieved not only by down-weighting outliers but also by transforming outliers. The rank transformation is a simple procedure where the data are replaced by their corresponding ranks. Iman and Conover(1979) showed the fact that the rank transformation is a robust and powerful procedure in the linear regression. In this paper, we show that we can also use the rank transformation to nonparametric regression to achieve the robustness.