• 제목/요약/키워드: local feature

검색결과 939건 처리시간 0.029초

딥러닝 합성곱 신경망을 이용한 효율적인 홍채인식 (Efficient Iris Recognition using Deep-Learning Convolution Neural Network)

  • 최광미;정유정
    • 한국전자통신학회논문지
    • /
    • 제15권3호
    • /
    • pp.521-526
    • /
    • 2020
  • 본 논문은 홍채영상의 이동불변의 특징값 을추출에 탁월한 고차 국소 자동 상관함수를 적용하여 25개의 특징 값을 입력 값으로 적용한 일반적인 HOLP 신경망에 특징 값 25개의 평균값을 추가한 개선된 HOLP 신경망을 구현하여 인식률을 확인하여 보았다. 종류가 상이한 딥러닝 구조들과 비교하였을 때 음성과 영상분야에서 탁월한 성능을 보이는 Back-Propagation 신경망과 특징 추출기와 분류기를 통합한 합성 곱 신경망을 활용하여 홍채인식의 인식률을 비교하여 보았다.

국부적 그래디언트 방향 히스토그램을 이용한 회전에 강인한 홍채 인식 (Robust-to-rotation Iris Recognition Using Local Gradient Orientation Histogram)

  • 최창수;전병민
    • 한국통신학회논문지
    • /
    • 제34권3C호
    • /
    • pp.268-273
    • /
    • 2009
  • 홍채 인식은 홍채 패턴 정보를 이용하여 사람의 신원을 확인하는 생체 인식 기술이다. 이러한 홍채 인식 시스템에 있어 조명의 영향이나 동공의 크기, 머리의 기울어짐 등으로 인해 발생될 수 있는 홍채 패턴의 변화에 대해 무관한 특징을 추출하는 것은 중요한 과제이다. 본 논문에서는 국부적 방향 히스토그램을 이용해 조명의 변화나 홍채의 회전에 강인한 홍채인식 방법을 제안하였다. 제안된 방법은 특징 추출 및 특징 비교 시 회전에 대해 별도의 처리가 필요하지 않아 고속의 특징 추출 및 특징 비교가 가능하며 성능도 기존의 방법과 대등함을 실험을 통하여 확인하였다.

An Improved Texture Feature Extraction Method for Recognizing Emphysema in CT Images

  • Peng, Shao-Hu;Nam, Hyun-Do
    • 조명전기설비학회논문지
    • /
    • 제24권11호
    • /
    • pp.30-41
    • /
    • 2010
  • In this study we propose a new texture feature extraction method based on an estimation of the brightness and structural uniformity of CT images representing the important characteristics for emphysema recognition. The Center-Symmetric Local Binary Pattern (CS-LBP) is first used to combine gray level in order to describe the brightness uniformity characteristics of the CT image. Then the gradient orientation difference is proposed to generate another CS-LBP code combining with gray level to represent the structural uniformity characteristics of the CT image. The usage of the gray level, CS-LBP and gradient orientation differences enables the proposed method to extract rich and distinctive information from the CT images in multiple directions. Experimental results showed that the performance of the proposed method is more stable with respect to sensitivity and specificity when compared with the SGLDM, GLRLM and GLDM. The proposed method outperformed these three conventional methods (SGLDM, GLRLM, and GLDM) 7.85[%], 22.87[%], and 16.67[%] respectively, according to the diagnosis of average accuracy, demonstrated by the Receiver Operating Characteristic (ROC) curves.

LBP와 HSV 컬러 히스토그램을 이용한 내용 기반 영상 검색 (Content-based Image Retrieval using LBP and HSV Color Histogram)

  • 이권;이철희
    • 방송공학회논문지
    • /
    • 제18권3호
    • /
    • pp.372-379
    • /
    • 2013
  • 본 논문에서는 LBP와 HSV 컬러 히스토그램을 이용한 내용 기반 영상 검색 방법을 제안한다. 영상 검색 시스템에서는 텍스트가 아닌 사용자가 원하는 특정한 객체를 포함하는 영상을 질의로 입력하여 원하는 영상을 검색한다. 대부분의 연구에서는 색상, 질감, 모양 등과 같은 전역 특징 값을 이용하여 영상을 검색한다. 이러한 전역 특징 값들은 하늘이나 바닥과 같은 배경이 큰 부분을 차지하는 영상에서는 특징 값의 대부분이 배경에서 추출되어 영상 검색의 성능 저하를 초래한다. 이러한 문제를 해결하기 위해, 컬러를 이용하여 영상의 배경을 고속으로 검출하고 배경의 영향을 줄여 관심 객체의 특징을 강조한다. 제안된 방법에서는 특징 값으로 HSV 컬러 히스토그램과 Local Binary Patterns을 사용한다. 또한, 색의 경계 부분의 패턴을 추출하기 위해 양자화 된 Hue 채널에서 Local Binary Patterns을 추출한다. 제안된 알고리즘의 성능 검증하기 위해, Corel 1000 database를 이용하여 실험한 결과 82% 이상의 높은 검색 정확도를 나타내었다.

Signed Local Directional Pattern을 이용한 강력한 얼굴 표정인식 (Robust Facial Expression Recognition Based on Signed Local Directional Pattern)

  • 류병용;김재면;안기옥;송기훈;채옥삼
    • 전자공학회논문지
    • /
    • 제51권6호
    • /
    • pp.89-101
    • /
    • 2014
  • 본 논문에서는 얼굴 표정인식을 위한 새로운 지역 미세 패턴 기술 방법인 Signed Local Directional Pattern(SLDP)을 제안한다. SLDP는 얼굴 영상의 텍스쳐 정보를 표현하기 위해 에지 정보를 이용한다. 이는 기존의 방법들에 비해 뛰어난 구별 성능과 효율적인 코드 생성을 가능하게 한다. SLDP는 마스크 범위 이웃 화소들을 이용하여 에지 반응 값을 계산하고 이들 중 부호를 고려하여 에지 반응 값이 큰 에지 방향 정보를 가지고 만들어진다. 이는 기존 LDP에서 구별하지 못하던 비슷한 에지구조에 밝기 값이 반대인 지역 패턴을 구별할 수 있다. 본 논문에서는 얼굴 표정인식을 위해 얼굴 영상을 여러 영역으로 분할하고 각 영역으로부터 SLDP코드의 분포를 계산한다. 각 분포는 얼굴의 지역적인 특징을 나타내고 이들 특징을 연결해서 얼굴 전체를 나타내는 얼굴 특징 벡터를 생성한다. 본 논문에서는 생성된 얼굴 특징 벡터와 SVM(Support Vector Machine)을 이용해서 Cohn-Kanade 데이터베이스와 JAFFE데이터베이스에서 얼굴 표정인식을 수행했다. SLDP는 표정인식에서 기존 방법들보다 뛰어난 결과를 보여주었다.

지역적 밝기 변화에 강인한 물체 인식을 위한 지역 서술자와 엔트로피 기반 유사도 척도에 관한 연구 (A study on a local descriptor and entropy-based similarity measure for object recognition system being robust to local illumination change)

  • 양정은;양승용;홍석근;조석제
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권9호
    • /
    • pp.1112-1118
    • /
    • 2014
  • 본 논문에서는 지역적인 밝기 변화에 강인한 지역 서술자와 유사도 척도를 제안한다. 제안한 지역 서술자는 Haar 웨이블렛 필터를 이용하여 특징점과 주변의 주파수 특성을 포함한 지역 서술자를 정의하여 지역적으로 불균일한 조명의 영향에도 특징점을 명확히 서술할 수 있다. 제안한 유사도 척도는 기존의 엔트로피 기반의 유사도에 지역 서술자로 계산한 유사도를 결합한 형태이다. 이는 지역적인 조명의 변화가 발생한 영역의 유사도를 정확히 반영할 수 있다. 실험을 통해 제안한 방법의 성능을 검증하였다.

에지 방향 지도와 영역 컬러 정보를 이용한 얼굴 추출 기법 (Face Detection Using Edge Orientation Map and Local Color Information)

  • 김재협;문영식
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.987-990
    • /
    • 2005
  • An important issue in the field of face recognitions and man-machine interfaces is an automatic detection of faces in visual scenes. it should be computationally fast enough to allow an online detection. In this paper we describe our ongoing work on face detection that models the face appearance by edge orientation and color distribution. We show that edge orientation is a powerful feature to describe objects like faces. We present a method for face region detection using edge orientation and a method for face feature detection using local color information. We demonstrate the capability of our detection method on an image database of 1877 images taken from more than 700 people. The variations in head size, lighting and background are considerable, and all images are taken using low-end cameras. Experimental results show that the proposed scheme achieves 94% detection rate with a resonable amount of computation time.

  • PDF

Vector space based augmented structural kinematic feature descriptor for human activity recognition in videos

  • Dharmalingam, Sowmiya;Palanisamy, Anandhakumar
    • ETRI Journal
    • /
    • 제40권4호
    • /
    • pp.499-510
    • /
    • 2018
  • A vector space based augmented structural kinematic (VSASK) feature descriptor is proposed for human activity recognition. An action descriptor is built by integrating the structural and kinematic properties of the actor using vector space based augmented matrix representation. Using the local or global information separately may not provide sufficient action characteristics. The proposed action descriptor combines both the local (pose) and global (position and velocity) features using augmented matrix schema and thereby increases the robustness of the descriptor. A multiclass support vector machine (SVM) is used to learn each action descriptor for the corresponding activity classification and understanding. The performance of the proposed descriptor is experimentally analyzed using the Weizmann and KTH datasets. The average recognition rate for the Weizmann and KTH datasets is 100% and 99.89%, respectively. The computational time for the proposed descriptor learning is 0.003 seconds, which is an improvement of approximately 1.4% over the existing methods.

Improved Gradient Direction Assisted Linking Algorithm for Linear Feature Extraction in High Resolution Satellite Images, an Iterative Dynamic Programming Approach

  • Yang, Kai;Liew, Soo Chin;Lee, Ken Yoong;Kwoh, Leong Keong
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.408-410
    • /
    • 2003
  • In this paper, an improved gradient direction assisted linking algorithm is proposed. This algorithm begins with initial seeds satisfying some local criteria. Then it will search along the direction provided by the initial point. A window will be generated in the gradient direction of the current point. Instead of the conventional method which only considers the value of the local salient structure, an improved mathematical model is proposed to describe the desired linear features. This model not only considers the value of the salient structure but also the direction of it. Furthermore, the linking problem under this model can be efficiently solved by dynamic programming method. This algorithm is tested for linear features detection in IKONOS images. The result demonstrates this algorithm is quite promising.

  • PDF

Point Pattern Matching Algorithm Using Unit-Circle Parametrization

  • Choi, Nam-Seok;Lee, Byung-Gook;Lee, Joon-Jae
    • 한국멀티미디어학회논문지
    • /
    • 제13권6호
    • /
    • pp.825-832
    • /
    • 2010
  • This paper presents only a matching algorithm based on Delaunay triangulation and Parametrization from the extracted minutiae points. This method maps local neighborhood of points of two different point sets to unit-circle using topology information by Delaunay triangulation method from feature points of real fingerprint. Then, a linked convex polygon that includes an interior point is constructed as one-ring which is mapped to unit-circle using Parametrization that keep shape preserve. In local matching, each area of polygon in unit-circle is compared. If the difference of two areas are within tolerance, two polygons are consider to be matched and then translation, rotation and scaling factors for global matching are calculated.