• 제목/요약/키워드: local energy

검색결과 1,961건 처리시간 0.032초

A Study of Dark Photon at the Electron-Positron Collider Experiments Using KISTI-5 Supercomputer

  • Park, Kihong;Cho, Kihyeon
    • Journal of Astronomy and Space Sciences
    • /
    • 제38권1호
    • /
    • pp.55-63
    • /
    • 2021
  • The universe is well known to be consists of dark energy, dark matter and the standard model (SM) particles. The dark matter dominates the density of matter in the universe. The dark matter is thought to be linked with dark photon which are hypothetical hidden sector particles similar to photons in electromagnetism but potentially proposed as force carriers. Due to the extremely small cross-section of dark matter, a large amount of data is needed to be processed. Therefore, we need to optimize the central processing unit (CPU) time. In this work, using MadGraph5 as a simulation tool kit, we examined the CPU time, and cross-section of dark matter at the electron-positron collider considering three parameters including the center of mass energy, dark photon mass, and coupling constant. The signal process pertained to a dark photon, which couples only to heavy leptons. We only dealt with the case of dark photon decaying into two muons. We used the simplified model which covers dark matter particles and dark photon particles as well as the SM particles. To compare the CPU time of simulation, one or more cores of the KISTI-5 supercomputer of Nurion Knights Landing and Skylake and a local Linux machine were used. Our results can help optimize high-energy physics software through high-performance computing and enable the users to incorporate parallel processing.

수상태양광 지원제도와 이익공유 방식 분석 (An Analysis of Policy Initiatives and Benefit Sharing Schemes to Support Floating Solar Power Plants)

  • 안승혁;소윤미;류호재;이효은;황보은영;윤순진
    • 신재생에너지
    • /
    • 제17권4호
    • /
    • pp.9-27
    • /
    • 2021
  • Floating solar power markets are rapidly growing worldwide. The main policy instrument utilized to expand renewable energy use in foreign countries with many floating solar power installations is Feed-in-Tariffs (FITs). Foreign countries apply FIT to projects that have a secured grid connection, and lately, there has been a change in the direction of introducing or expanding auction systems. Vietnam and Taiwan give higher FIT to floating solar installations than land solar ones, and China, Vietnam, and Taiwan have higher FITs for certain regions. Compared to foreign countries where large-scale floating solar power installations have been installed, Korea has utilized Renewable Energy Certificate (REC) weights for residents' participation are provided additionally under the Renewable Portfolio Standard (RPS). In contrast to Korea, where residents' participation and benefit profit sharing are emphasized, the Netherlands provides opportunities for local residents to participate in floating solar power projects through cooperatives to improve the residents' acceptance.

Effects of electronic energy deposition on pre-existing defects in 6H-SiC

  • Liao, Wenlong;He, Huan;Li, Yang;Liu, Wenbo;Zang, Hang;Wei, Jianan;He, Chaohui
    • Nuclear Engineering and Technology
    • /
    • 제53권7호
    • /
    • pp.2357-2363
    • /
    • 2021
  • Silicon carbide is widely used in radiation environments due to its excellent properties. However, when exposed to the strong radiation environment constantly, plenty of defects are generated, thus causing the material performance downgrades or failures. In this paper, the two-temperature model (2T-MD) is used to explore the defect recovery process by applying the electronic energy loss (Se) on the pre-damaged system. The effects of defect concentration and the applied electronic energy loss on the defect recovery process are investigated, respectively. The results demonstrate that almost no defect recovery takes place until the defect density in the damage region or the local defect density is large enough, and the probability of defect recovery increases with the defect concentration. Additionally, the results indicate that the defect recovery induced by swift heavy ions is mainly connected with the homogeneous recombination of the carbon defects, while the probability of heterogeneous recombination is mainly dependent on the silicon defects.

DYNAMIC FORMATION AND ASSOCIATED HEATING OF A MAGNETIC LOOP ON THE SUN

  • Tetsuya, Magara;Yeonwoo, Jang;Donghui, Son
    • 천문학회지
    • /
    • 제55권6호
    • /
    • pp.215-220
    • /
    • 2022
  • To seek an atmospheric heating mechanism operating on the Sun we investigated a heating source generated by a downflow, both of which may arise in a magnetic loop dynamically formed on the Sun via flux emergence. Since an observation shows that the illumination of evolving magnetic loops under the dynamic formation occurs sporadically and intermittently, we performed a magnetohydrodynamic simulation of flux emergence to obtain a high-cadence simulated data, where temperature enhancement was identified at the footpoint of an evolving magnetic loop. Unlike a rigid magnetic loop with a confined flow in it, the evolving loop in a low plasma β atmosphere is subjected to local compression by the magnetic field surrounding the loop, which drives a strong supersonic downflow generating an effective footpoint heating source in it. This may introduce an energy conversion system to the magnetized atmosphere of the Sun, in which the free magnetic energy causing the compression via Lorentz force is converted to the flow energy, and eventually reduced to the thermal energy. Dynamic and thermodynamic states involved in the system are explained.

Computer simulation study for the effect of potential energy on the behavior of grain boundary using Molecular dynamics

  • Choi, Dong-Youl;Kim, Hyun-Soo;Kim, Young-Suk;Tomita, Yoshihiro
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.173-178
    • /
    • 1999
  • In this study MD simulations have been performed to observe the behavior of a grain boundary in an a-Fe plate under 2-dimensional loading. In MD simulation the acceleration of every molecule can be achieved from the potential energy and the force interacting between each molecule and the integration of the motion equation by using Verlet method gives the displacement of each molecule. Initially four a-Fe rectangular plates having different misorientation angles of grain boundary were modeled by using the Johnson potential and Morse potential We compared the potential energy of the grain boundary system with that of the perfect structure model. Also we could obtain the width of the grain boundary by investigating the local potential energy distribution. The tensile loading for each grain boundary models was applied and the behavior of grin boundary was studied. From this study it was clarified that in the case using Johnson potential the obvious fracture mechanism occurs along the grain boundary in the case of Morse potential the diffusion of the grain boundary appears instead of the grain boundary fracture.

  • PDF

EPMA quantification on the chemical composition of retained austenite in a Fe-Mn-Si-C-based multi-phase steel

  • Yoon‑Uk Heo;Chang‑Gon Jeong;Soo‑Hyun Kim;Gun‑Young Yoon;T. T. T. Trang;Youngyun Woo;Eun Yoo Yoon;Young‑Seon Lee
    • Applied Microscopy
    • /
    • 제52권
    • /
    • pp.14.1-14.10
    • /
    • 2022
  • An electron probe X-ray microanalyzer (EPMA) is an essential tool for studying chemical composition distribution in the microstructure. Quantifying chemical composition using standard specimens is commonly used to determine the composition of individual phases. However, the local difference in chemical composition in the standard specimens brings the deviation of the quantified composition from the actual one. This study introduces how to overcome the error of quantification in EPMA in the practical aspect. The obtained results are applied to evaluate the chemical com position of retained austenite in multi-phase steel. Film-type austenite shows higher carbon content than blocky-type one. The measured carbon contents of the retained austenite show good coherency with the calculated value from the X-ray diffraction.

에너지와 空間構造에 關한 硏究 -農村 $\cdot$ 都市地域 生 圈의 境遇- (A Study of Energy and Spatial Structure -The Case of Rural-urban Regional Settlement-)

  • 김귀곤;김명진;성현찬;이호진
    • 한국대기환경학회지
    • /
    • 제4권1호
    • /
    • pp.45-57
    • /
    • 1988
  • This is a close relationship between energy consumption and the way in which we develop and manage our regions. This study has estimated and compared energy requirements for the journey to work, resulting from alternative population and employment growth patterns in a rural-urban regional settlement of Korea. The broad scope of work was as follows: i) Select the study area ii) Formulate alternative growth patterns iii) Develop the Hansen and double-constrained gravity model iv) Application of Vogel's approximation method and the developed Hansen and gravity model to the case study area. v) Analyze the relationship between spatial structure, transport energy-requirements and environmental pollution. At issue here is the trade-off between air pollution averages and variations. Policies concentrating manufacturing industry and other regional facilities, for instance, may indeed reduce average pollution levels at the benefit of less-car miles, thus, reducing auto pollution, in the region, but increase local pollution peaks.

  • PDF

필라멘트 와인딩 공법 GFRP 원형 튜브의 에너지 흡수특성에 관한 연구 (A Study on the energy absorption characteristics of GFRP circular tubes fabricated by the filament winding method)

  • 김거영;구정서
    • Composites Research
    • /
    • 제22권4호
    • /
    • pp.1-12
    • /
    • 2009
  • 본 논문에서는 복합재 원형튜브의 에너지 흡수 특성을 평가하기 위해 준정적 압괴실험을 시행하였다. 사용된 시편은 필라멘트 와인딩 공법으로 제작된 GFRP(유리섬유/에폭시수지) 원형 튜브이다. 복합재 튜브의 에너지 흡수 특성 분석을 위한 파라미터로서 튜브의 트리거메커니즘, t/D, 섬유배향각 등을 고려하여 그 특성을 비교하였다. 튜브의 형상 측면에서 튜브 직경이 커짐에 따라 delamination에 의한 국부좌굴 발생빈도가 증가하게 되어 불안정한 압괴모드가 발생하는데 이러한 현상은 섬유 배향각을 조정하여 안정적인 압괴모드를 도출할 수 있었다.

Modelling of the fire impact on CONSTOR RBMK-1500 cask thermal behavior in the open interim storage site

  • Robertas Poskas;Kestutis Rackaitis;Povilas Poskas;Hussam Jouhara
    • Nuclear Engineering and Technology
    • /
    • 제55권7호
    • /
    • pp.2604-2612
    • /
    • 2023
  • Spent nuclear fuel and long-lived radioactive waste must be carefully handled before disposing them off to a geological repository. After the pre-storage period in water pools, spent nuclear fuel is stored in casks, which are widely used for interim storage. Interim storage in casks is very important part in the whole cycle of nuclear energy generation. This paper presents the results of the numerical study that was performed to evaluate the thermal behavior of a metal-concrete CONSTOR RBMK-1500 cask loaded with spent nuclear fuel and placed in an open type interim storage facility which is under fire conditions (steady-state, fire, post-fire). The modelling was performed using the ANSYS Fluent code. Also, a local sensitivity analysis of thermal parameters on temperature variation was performed. The analysis demonstrated that the maximum increase in the fuel load temperatures is about 10 ℃ and 8 ℃ for 30 min 800 ℃ and 60 min 600 ℃ fires respectively. Therefore, during the fire and the post-fire periods, the fuel load temperatures did not exceed the 300 ℃ limiting temperature set for an RBMK SNF cladding for long-term storage. This ensures that fire accident does not cause overheating of fuel rods in a cask.

스마트 팩토리 모빌리티 에너지 효율을 위한 경로 최적화에 관한 연구 (Route Optimization for Energy-Efficient Path Planning in Smart Factory Autonomous Mobile Robot)

  • 엄동희;조동욱;김성주;박상현;황성호
    • 드라이브 ㆍ 컨트롤
    • /
    • 제21권1호
    • /
    • pp.46-52
    • /
    • 2024
  • The advancement of autonomous driving technology has heightened the importance of Autonomous Mobile Robotics (AMR) within smart factories. Notably, in tasks involving the transportation of heavy objects, the consideration of weight in route optimization and path planning has become crucial. There is ongoing research on local path planning, such as Dijkstra, A*, and RRT*, focusing on minimizing travel time and distance within smart factory warehouses. Additionally, there are ongoing simultaneous studies on route optimization, including TSP algorithms for various path explorations and on minimizing energy consumption in mobile robotics operations. However, previous studies have often overlooked the weight of the objects being transported, emphasizing only minimal travel time or distance. Therefore, this research proposes route planning that accounts for the maximum payload capacity of mobile robotics and offers load-optimized path planning for multi-destination transportation. Considering the load, a genetic algorithm with the objectives of minimizing both travel time and distance, as well as energy consumption is employed. This approach is expected to enhance the efficiency of mobility within smart factories.