• 제목/요약/키워드: local displacement

검색결과 420건 처리시간 0.025초

Sequential Quadratic Programming based Global Path Re-Planner for a Mobile Manipulator

  • Lee Soo-Yong
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권3호
    • /
    • pp.318-324
    • /
    • 2006
  • The mobile manipulator is expected to work in partially defined or unstructured environments. In our global/local approach to path planning, joint trajectories are generated for a desired Cartesian space path, designed by the global path planner. For a local path planner, inverse kinematics for a redundant system is used. Joint displacement limit for the manipulator links is considered in the motion planner. In an event of failure to obtain feasible trajectories, the task cannot be accomplished. At the point of failure, a deviation in the Cartesian space path is obtained and a replanner gives a new path that would achieve the goal position. To calculate the deviation, a nonlinear optimization problem is formulated and solved by standard Sequential Quadratic Programming (SQP) method.

State-space formulation for simultaneous identification of both damage and input force from response sensitivity

  • Lu, Z.R.;Huang, M.;Liu, J.K.
    • Smart Structures and Systems
    • /
    • 제8권2호
    • /
    • pp.157-172
    • /
    • 2011
  • A new method for both local damage(s) identification and input excitation force identification of beam structures is presented using the dynamic response sensitivity-based finite element model updating method. The state-space approach is used to calculate both the structural dynamic responses and the responses sensitivities with respect to structural physical parameters such as elemental flexural rigidity and with respect to the force parameters as well. The sensitivities of displacement and acceleration responses with respect to structural physical parameters are calculated in time domain and compared to those by using Newmark method in the forward analysis. In the inverse analysis, both the input excitation force and the local damage are identified from only several acceleration measurements. Local damages and the input excitation force are identified in a gradient-based model updating method based on dynamic response sensitivity. Both computation simulations and the laboratory work illustrate the effectiveness and robustness of the proposed method.

Experimental study on shear behavior of I-girder with concrete-filled tubular flange and corrugated web

  • Shao, Y.B.;Wang, Y.M.
    • Steel and Composite Structures
    • /
    • 제22권6호
    • /
    • pp.1465-1486
    • /
    • 2016
  • Conventional plate I-girders are sensitive to local buckling of the web when they are subjected mainly to shear action because the slenderness of the web in out-of-plane direction is much bigger. The local buckling of the web can also cause the distorsion of the plate flange under compression as a thin-walled plate has very low torsional stiffness due to its open section. A new I-girder consisted of corrugated web, a concrete-filled rectangular tubular flange under compression and a plate flange under tension is presented to improve its resistance to local buckling of the web and distorsion of the flat plate flange under compression. Experimental tests on a conventional plate I-girder and a new presented I-girder are conducted to study the failure process and the failure mechanisms of the two specimens. Strain developments at some critical positions, load-lateral displacement curves, and load-deflection curves of the two specimens have all be measured and analyzed. Based on these results, the failure mechanisms of the two kinds of I-girders are discussed.

Bishop theory and longitudinal vibration of nano-beams by two-phase local/nonlocal elasticity

  • Reza Nazemnezhad;Roozbeh Ashrafian;Alireza Mirafzal
    • Advances in nano research
    • /
    • 제15권1호
    • /
    • pp.75-89
    • /
    • 2023
  • In this paper, Bishop theory performs longitudinal vibration analysis of Nano-beams. Its governing equation, due to integrated displacement field and more considered primarily effects compared with other theories, enjoys fully completed status, and more reliable results as well. This article aims to find how Bishop theory and Two-phase elasticity work together. In other words, whether Bishop theory will be compatible with Two-phase local/nonlocal elasticity. Hamilton's principle is employed to derive governing equation of motion, and then the 6th order of Generalized Differential Quadrature Method (GDQM) as a constructive numerical method is utilized to attain the discretized two-phase formulation. To acquire a proper verification procedure, exact solution is prepared to be compared with current results. Furthermore, the effects of key parameters on the objective are investigated.

The effect of local topography on the seismic response of a coupled train-bridge system

  • Qiao, Hong;Du, Xianting;Xia, He;De Roeck, Guido;Lombaert, Geert;Long, Peiheng
    • Structural Engineering and Mechanics
    • /
    • 제69권2호
    • /
    • pp.177-191
    • /
    • 2019
  • The local topography has a significant effect on the characteristics of seismic ground motion. This paper investigates the influence of topographic effects on the seismic response of a train-bridge system. A 3-D finite element model with local absorbing boundary conditions is established for the local site. The time histories of seismic ground motion are converted into equivalent loads on the artificial boundary, to obtain the seismic input at the bridge supports. The analysis of the train-bridge system subjected to multi-support seismic excitations is performed, by applying the displacement time histories of the seismic ground motion to the bridge supports. In a case study considering a bridge with a span of 466 m crossing a valley, the seismic response of the train-bridge system is analyzed. The results show that the local topography and the incident angle of seismic waves have a significant effect on the seismic response of the train-bridge system. Leaving these effects out of consideration may lead to unsafe analysis results.

Improved capacity spectrum method with inelastic displacement ratio considering higher mode effects

  • Han, Sang Whan;Ha, Sung Jin;Moon, Ki Hoon;Shin, Myoungsu
    • Earthquakes and Structures
    • /
    • 제7권4호
    • /
    • pp.587-607
    • /
    • 2014
  • Progressive collapse, which is referred to as the collapse of the entire building under local damages, is a common failure mode happened by earthquakes. The collapse process highly depends on the whole structural system. Since, asymmetry of the building plan leads to the local damage concentration; it may intensify the progressive collapse mechanism of asymmetric buildings. In this research the progressive collapse of regular and irregular 6-story RC ordinary moment resisting frame buildings are studied in the presence of the earthquake loads. Collapse process and collapse propagation are investigated using nonlinear time history analyses (NLTHA) in buildings with 5%, 15% and 25% mass asymmetry with respect to the number of collapsed hinges and story drifts criteria. Results show that increasing the value of mass eccentricity makes the asymmetric buildings become unstable earlier and in the early stages with lower number of the collapsed hinges. So, with increasing the mass eccentricity in building, instability and collapse of the entire building occurs earlier, with lower potential of the progressive collapse. It is also demonstrated that with increasing the mass asymmetry the decreasing trend of the number of collapsed beam and column hinges is approximately similar to the decreasing trend in the average story drifts of the mass centers and stiff edges. So, as an alternative to a much difficult-to-calculate local response parameter of the number of collapsed hinges, the story drift, as a global response parameter, measures the potential of progressive collapse more easily.

우측 겸부를 통한 제4위전위증 교정 수술과 제1위 절개 수술의 병행 (Operation of Abomasal Displacement and Foreign Body Removal in the Rumen through the Right Flank Celiotomy)

  • 조진행;김명철;정성목;이재연;신범준
    • 한국임상수의학회지
    • /
    • 제30권1호
    • /
    • pp.80-85
    • /
    • 2013
  • Twenty one cows in Goyang and Paju cities were referred due to displacement of the abomasum and foreign body in the rumen. Omentopexy and rumenotomy through a right flank celiotomy were performed for treatment of abomasal displacement and the foreign body removal in the rumen. The right paralumbar fossa is clipped and prepared surgically. Local anesthesia is instituted by performing inverted L block. The abdomen was entered through 25 to 30 cm vertical incision in the right paralumbar fossa starting 4 to 5 cm ventral to the transverse processes of the lumbar vertebrae. A 14-gauge needle with rubber tubing attached is inserted to relieve the gaseous pressure and to facilitate further exploration and manipulation. The rumen was gently pulled out of the abdominal cavity and incision was made at the omentum. Rumenotomy was done and retrieved the foreign body. After the rumen was rinsed with sterile saline, the rumen wall was closed by a Lembert suture technique. The omentum was closed by a simple continuous suture. Right flank omentopexy was performed for the surgical correction of abomasal displacement. Recovery results among 21 cows included 9 excellent, 5 good, 2 fair and 5 bad. It was considered that operation of abomasal displacement and foreign body removal in the rumen through right flank celiotomy was a good surgical technique to reduce expenses, surgical pain, and surgery time.

굴착사면의 안정해석과 보강설계법 (Stability Analysis and Reinforced Design Method of Excavation Slopes)

  • 강예묵;이달원;조재홍
    • 한국농공학회지
    • /
    • 제38권5호
    • /
    • pp.140-154
    • /
    • 1996
  • In this study, displacement, deformation, and stability according to change of cohesion and internal friction angle were investigated through elasto-plastic method, finite-element method, and in-site experiment when excavating soft ground using sheet pile. The results of the study were as follows : 1. The horizontal displacement was 5.5% of the excavation depth by the elasto-plastic method and 3.9% of the excavation depth by the on-site experiment at the final excavation depth(GL-8.Om) on the condition of double stair strut after excavating GL-6.Om. 2. Relationships between cohesion(c) and internal friction angle $({\varphi})$ when safety factor to the penetration depth was 1.2 is shown in the following equations : (a) c= -O.0086$({\varphi})$+ O.3(D=3m) and (b) c=-0.00933$({\varphi})$+0.14(D=4m). 3. The results of elasto-plastic method and the experiment show that possible excavation depth was GL-6.Om after setting single stair strut in a short period in terms of possibility of carrying out on the condition of experimental site on the contrary general reinforcement method, setting double stair strut after excavating GL-4.0m. 4. After setting the strut, distribution of the horizontal displacement had concentrated on the excavation base and possible local failure which the shear strain caused decreased by the strut reinforced. 5. After setting strut, displacement of sheet pile was decreased by half, the limit of stable excavation depth of ground was GL-8.Om, and the maximum horizontal displacement at the GL-8.Om was 1.6% of excavation depth by the elasto-plastic method, 0.7% of excavation depth by the finite-element method.

  • PDF

저속충격시험을 이용한 고체추진제의 동적 응력-변형률 특성 연구 (Study on the Dynamic Stress-Strain Behavior of Solid Propellant Using Low-Velocity Impact Test)

  • 황재민;고은수;조현준;김인걸;김재훈
    • 한국항공우주학회지
    • /
    • 제49권10호
    • /
    • pp.813-820
    • /
    • 2021
  • 본 연구에서는 고체추진제의 동적 응력-변형률 특성을 고찰하기 위하여 저속충격시험을 수행하였다. 저속충격시험 시 충격체(Impactor)의 하중, 변위를 측정하여 고체추진제의 동적 거동을 확인하였다. 3점 굽힘 형태의 저속충격시험을 수행하였고, 이때 발생하는 국소변위와 길이가 짧고 두께가 두꺼운 고체추진제 시편의 전단 변위를 보상하여 순수 굽힘변위를 계산하였다. 보상된 변위와 측정된 하중을 사용하여 응력과 변형률을 계산하였고 응력-변형률 곡선으로부터 고체추진제의 동적 물성을 획득하여 이를 정적 굽힘 물성과 비교하였다. 운용 환경에 따른 온도별 고체추진제의 동적 물성을 획득하기 위해 상온, 고온, 저온에서 실험을 수행하고 결과를 비교분석하였다.

Application of shear deformation theory for two dimensional electro-elastic analysis of a FGP cylinder

  • Arefi, M.;Rahimi, G.H.
    • Smart Structures and Systems
    • /
    • 제13권1호
    • /
    • pp.1-24
    • /
    • 2014
  • The present study deals with two dimensional electro-elastic analysis of a functionally graded piezoelectric (FGP) cylinder under internal pressure. Energy method and first order shear deformation theory (FSDT) are employed for this purpose. All mechanical and electrical properties except Poisson ratio are considered as a power function along the radial direction. The cylinder is subjected to uniform internal pressure. By supposing two dimensional displacement and electric potential fields along the radial and axial direction, the governing differential equations can be derived in terms of unknown electrical and mechanical functions. Homogeneous solution can be obtained by imposing the appropriate mechanical and electrical boundary conditions. This proposed solution has capability to solve the cylinder structure with arbitrary boundary conditions. The previous solutions have been proposed for the problem with simple boundary conditions (simply supported cylinder) by using the routine functions such as trigonometric functions. The axial distribution of the axial displacement, radial displacement and electric potential of the cylinder can be presented as the important results of this paper for various non homogeneous indexes. This paper evaluates the effect of a local support on the distribution of mechanical and electrical components. This investigation indicates that a support has important influence on the distribution of mechanical and electrical components rather than a cylinder with ignoring the effect of the supports. Obtained results using present method at regions that are adequate far from two ends of the cylinder can be compared with previous results (plane elasticity and one dimensional first order shear deformation theories).