• Title/Summary/Keyword: local cooling temperature

Search Result 182, Processing Time 0.029 seconds

Boundary Element Analysis of Singular Residual Thermal Stresses in A Fiber-Reinforced Unifirectional Viscoelastic Laminate (섬유가 보강된 단일방향 점탄성 복합재료에 발생하는 특이 잔류 열응력의 경계요소해석)

  • 이상순;박준수
    • Computational Structural Engineering
    • /
    • v.9 no.4
    • /
    • pp.181-187
    • /
    • 1996
  • This paper concerns the singular thermal stresses at the interface corner between the elastic fiber and the viscoelastic matrix of a two-dimensional unidirectional laminate model induced during cooling from cure temperature down to room temperature. Time-domain boundary element method is employed to investigate the nature of residual thermal stresses at the interface. Numerical results show that very large stress gradients are present at the interface corner and such stress singularity might lead to local yielding or fiber-matrix debonding.

  • PDF

Analysis of Supply Airflow Control by a Stratified Thermal Model in a VAV System

  • Kim, Seo-Young;Moon, Jeong-Woo;Cho, Hyung-Hee
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.3
    • /
    • pp.46-56
    • /
    • 2001
  • The present study concerns the numerical simulation of a supply airflow control in a variable air volume (VAY) system. A stratified thermal model (multi-zone model) is suggested to predict a local thermal response of an air-conditioned space. The effects of various thermal parameters such as the cooling system capacity, the thermal mass of an air-conditioned space, the time delay of thermal effect, and the building envelope heat transmission are investigated. Further, the influence of control parameters such as the supply air temperature, the PI control factor and the thermostat location on a VAV system is quantitatively delineated. The results obtained show that the previous homogeneous lumped thermal model (single zone model) may overestimate the time taken to the set point temperature. It is also found that there exist the appropriate ranges of the control parameters for the optimal airflow control of the VAV system.

  • PDF

In situ monitoring-based feature extraction for metal additive manufacturing products warpage prediction

  • Lee, Jungeon;Baek, Adrian M. Chung;Kim, Namhun;Kwon, Daeil
    • Smart Structures and Systems
    • /
    • v.29 no.6
    • /
    • pp.767-775
    • /
    • 2022
  • Metal additive manufacturing (AM), also known as metal three-dimensional (3D) printing, produces 3D metal products by repeatedly adding and solidifying metal materials layer by layer. During the metal AM process, products experience repeated local melting and cooling using a laser or electron beam, resulting in product defects, such as warpage, cracks, and internal pores. Such defects adversely affect the final product. This paper proposes the in situ monitoring-based warpage prediction of metal AM products with experimental feature extraction. The temperature profile of the metal AM substrate during the process was experimentally collected. Time-domain features were extracted from the temperature profile, and their relationships to the warpage mechanism were investigated. The standard deviation showed a significant linear correlation with warpage. The findings from this study are expected to contribute to optimizing process parameters for metal AM warpage reduction.

Effects of Exposed Parts of Body with Garments on Human Thermoregulatory Responses to Cold Environments (추운 환경에서 노출된 부위에 따른 체온조절 반응에 대한 연구)

  • 성유진;이순원
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.21 no.6
    • /
    • pp.977-987
    • /
    • 1997
  • The present study was designed to see what the local cooling of different body regions especially head and neck, hands and feet effect physiological responses in cold environment. Four male subjects wore garments covering whole body except face and rested for 20 min and then they rested for 40 min with uncovered head, neck, hands and feet, respectively in a cold environment(10$\pm$1$^{\circ}C$, 50$\pm$5%R.H.) 1. Rectal temperature increased when hands and feet were exposed to cold environment respectively, and when head and neck, hands and feet were exposed to cold environment together. 2. Exposed skin temperatures fell in cold environment. And hands temperature was lower than any other exposed skin temperatures. The hands temperature was significantly lower when head was exposed than when head was covered. And the feet temperature were significantly lower when hands were exposed than when hands were covered. 3. Mean skin temperature was the lowest when head and neck, hands and feet were exposed simultaneously, In conclusion, skin temperatures of extremities were decreased due to exposure to the cold environment. Especially upper extremities were lower than lower extremities by exposed parts of the body. It seemed that the extremities played the role of cold receptors but head and neck didn't. And there were large heat losses from the unprotected head and neck. In cold environment of 1$0^{\circ}C$ , thus, it is suggested for the purpose of thermoregulatory responses that head and neck would be covered and extremities would be exposed, especially upper extremities.

  • PDF

Measurement of Cross-sectional Temperature Distribution in Micro-scale Gap Fluid Using LIF Technique in Combination with CLSM (LIF 및 CLSM을 결합한 미소 간극 내 유체의 단면 온도 분포 측정 기법)

  • Jeong, Dong-Woon;Lee, Sang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.834-841
    • /
    • 2006
  • In the present wort the Laser-induced Fluorescence (LIF) technique and Confocal Laser Scanning Microscopy (CLSM) have been combined to measure the temperature distribution across a micro-scale liquid layer as a direct and non-invasive method. Only the fluorescent light emitted from a very thin volume around a focal plane can be selectively detected, and it enables us to measure the liquid temperatures even at the close vicinity of the walls. As an experimental verification, a test section consists of two flat plates (for heating and cooling, respectively) separated by about 240 microns was made, and the methanol mixed with a temperature-sensitive dye, Rhodamine B, was filled in the gap between them. The measured temperature distribution across the gap showed good linearity, which is a typical characteristic of conduction heat transfer through a thin liquid layer. In result, the CLSM-LIF technique proposed in the present study was found to be a promising method to measure the local temperatures in the liquid flow field in microfluidic devices.

A Study on Locally Drying Underwater Welding (국부건식(물커튼식)수중용접법에 관한 연구)

  • 이규복;황선효;박영조;김종열
    • Journal of Welding and Joining
    • /
    • v.10 no.2
    • /
    • pp.51-62
    • /
    • 1992
  • A torch was designed and fabricated in order to develope the technology of "locally drying underwater welding" by water curtain method. The condition for the formation of the possible local cavity, the mechanical properties and the thermal cycle of welds were investigated in the developed welding equipment compared with in-air welding. The possibility of highly reliable and practical underwater welding was found. The proper local cavity was formed above the water flowrate of 30l/min and CO$_{2}$ gas flowrate of 100l/min. The bead width and penetration depth were increased with increasing welding current. The hardness of weldments is about 160Hv in air welding, but about 210Hv in underwater welding. The elongation and the impact value of underwater weldments are 15% and 6Kg/cm$^{2}$ respectively, which are only half as much as the values of in-air welding. The cooling time in the temperature range from 800.deg.C to 500.deg.C affecting the structure and the hardness of weldments is about 22sec. in air welding while about 10sec. in underwater welding.r welding.

  • PDF

Proposal of residual stress mitigation in nuclear safety-related austenitic stainless steel TP304 pipe bended by local induction heating process via elastic-plastic finite element analysis

  • Kim, Jong-Sung;Kim, Kyoung-Soo;Oh, Young-Jin;Oh, Chang-Young
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1451-1469
    • /
    • 2019
  • This paper proposes a residual stress mitigation of a nuclear safety-related austenitic stainless steel TP304 pipe bended by local induction heating process via performing elastic-plastic finite element analysis. Residual stress distributions of the pipe bend were calculated by performing finite element analysis. Validity of the finite element analysis procedure was verified via comparing with temperature histories measured by using thermocouples, ultrasonic thickness measurement results, and residual stress measurement results by a hole-drilling method. Parametric finite element stress analysis was performed to investigate effects of the process and geometric shape variables on the residual stresses on inner surfaces of the pipe by applying the verified procedure. As a result of the parametric analysis, it was found that it is difficult to considerably reduce the inner surface residual stresses by changing the existing process and geometric shape variables. So, in order to mitigate the residual stresses, effect of an additional process such as cooling after the bending on the residual stresses was investigated. Finally, it was identified that the additional heating after the bending can significantly reduce the residual stresses while other variables have insignificant effect.

Effects of Several Cooling Methods and Cool Water Hose Bed Culture on Growth and Microclimate in Summer Season Cultivation of Narrowhead Goldenray 'Ligularia stenocephaia' (곤달비 여름재배 시 냉각방법과 냉수호스베드재배가 생육 및 미기상에 미치는 영향)

  • Kim, Ki-Deog;Lee, Eung-Ho;Kim, Won-Bae;Lee, Jun-Gu;Yoo, Dong-Lim;Kwon, Young-Seok;Lee, Jong-Nam;Jang, Suk-Woo;Hong, Soon-Choon
    • Journal of Bio-Environment Control
    • /
    • v.20 no.2
    • /
    • pp.116-122
    • /
    • 2011
  • This study was carried out to investigate the effects of several cooling methods such as water hose cooling, mist, fog and control on growth and microclimate, and to develop a simple nutriculture bed for production of fresh leaves of narrowhead goldenaray 'Ligularia stenocephala'. When the root-zone was cooled with 240 L/hr flow rate of $13^{\circ}C$ ground water using water hose, the temperature was lowered approximately by 2 to $3^{\circ}C$ than that of control. The growth of narrowhead goldenaray were favorable in the water hose cooling compared with the other cooling methods. Nutrient culture system having part cooling effect around plant canopy was developed. The system was composed of 15 cm diameter of water hose on side wall of beds, cooling hose, and expanded rice hull media as organic substrate. When cool water which the temperature changed in the range of 14 to $22^{\circ}C$ diurnally with 240 L/hr of flow rate through water hose, the air temperature around canopy and root-zone temperature were dropped by $0.5^{\circ}C$ and $3^{\circ}C$ compared with that of conventional styrofoam bed, respectively. These results showed that newly devised bed system using water hose was simple and economical for the production of high quality narrowhead goldenaray leaves. This system might be practically used both at summer and winter season for the cultivation of narrow head goldenaray by part cooling or heating around root-zone and plant canopy.

Local structural study of commercial grade MBa2Cu3O7-x (M = Y and/or Gd) coated conductors by polarized Raman spectroscopy

  • Moon, Hankyoul;Shin, Hae-Young;Jin, Hye-Jin;Jo, William;Yoon, Seokhyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.4
    • /
    • pp.25-29
    • /
    • 2015
  • In 1987, M. K. Wu and Paul Chu discovered $Y_{1.2}Ba_{0.8}CuO_4$ (YBCO) with critical temperature ($T_c$) of 93 K. It has significantly lowered the cost of cooling of a material up to the point where superconductivity set in. Utilizing the cost reduction of attaining superconductivity and the vast amount of research to understand characteristics of high temperature oxide superconducting materials, there has been effort to use a high temperature superconductor as a coated conductor. It is important to characterize the materials precisely for stable performance before commercializing. We used polarized Raman scattering spectroscopy to study structural and stoichiometric information regarding $YBa_2Cu_3O_{7-x}$, $GdYBa_2Cu_3O_{7-x}$, and $GdBa_2Cu_3O_{7-x}$ produced by three leading groups of producing commercial grade high temperature superconductor coated conductors American Superconductor Corporation, Superpower, and SuNAM.

Flow Field Design and Stack Performance Evaluation of the Thin Plate Separator for High Temperature Polymer Electrolyte Membrane Fuel Cell (고온 고분자전해질 연료전지 박판형 분리판의 유로 설계 및 스택 성능 평가)

  • KIM, JI-HONG;KIM, MINJIN;KIM, JINSOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.5
    • /
    • pp.442-449
    • /
    • 2018
  • Research on High temperature polymer electrolyte fuel cell (HT-PEMFC) has actively been conducted all over the world. Since the HT-PEMFC can be operated at a high temperature of $120-180^{\circ}C$ using phosphoric acid-doped polybenzimidazole (PBI) electrolyte membrane, it has considerable advantages over conventional PEMFC in terms of operating conditions and system efficiency. However, If the thermal distribution is not uniform in the stack unit, degradation due to local reaction and deterioration of lifetime are difficult to prevent. The thin plate separator reduces the volume of the fuel cell stack and improves heat transfer, consequently, enhancing the cooling effect. In this paper, a large area flow field of thin plate separator for HT-PEMFC is designed and sub-stack is fabricated. We have studied stack performance evaluation under various operating conditions and it has been verified that the proposed design can achieve acceptable stack performance at a wide operating range.