• 제목/요약/키워드: local compression

검색결과 405건 처리시간 0.025초

장수명주택에 적용되는 건식바닥의 성능평가에 관한 연구 (A Study on Performance Assessment of Dry Floors Applied to Long-life Housing)

  • 서동구;이종호;김수암;신윤호;황은경
    • 대한건축학회논문집:구조계
    • /
    • 제35권5호
    • /
    • pp.133-143
    • /
    • 2019
  • Various problems regarding the wet floor method such as its complicated process and waste of thermal storage have been raised, but the usage of dry floor recommended for long-life housing has declined due to lack of confidence on the performance of dry floor. The purpose of this study is to secure the credibility of dry floor. Under this purpose, this study considered precedent studies and established directions to secure the performance of long-life housing infill, and thus, 9 performance items (Impact sound, Smoothness, thermal comfort, sensation hardness while walking, falling safety, impact resistance, local compression load, local strength and strain at heating) were drawn. In addition, the experiment was carried out for 5 performances except for legal performance, some dry floor performances and whole spatial performance. As a result, an appropriate result from all performances except was obtained. The performance of dry floor was verified for each item from these results and it is expected to use such results as basic data on dry floor in the future.

Enhancing Structural Integrity of Composite Sandwich Beams Using Viscoelastic Bonding with Tapered Epoxy Reinforcement

  • Rajesh Lalsing Shirale;Surekha Anil Bhalchandra
    • 한국재료학회지
    • /
    • 제34권3호
    • /
    • pp.125-137
    • /
    • 2024
  • Composite laminates are used in a wide range of applications including defense, automotive, aviation and aerospace, marine, wind energy, and recreational sporting goods. These composite beams still exhibit problems such as buckling, local deformations, and interlaminar delamination. To overcome these drawbacks, a novel viscoelastic autoclave bonding with tapered epoxy reinforcement polyurethane films is proposed. In existing laminates, compression face wrinkling and interlaminar delamination is caused in the sandwich beam. The unique viscoelastic autoclave spunbond interlayer bonding is designed to prevent face wrinkling and absorb and distribute stresses induced by external loads, thereby eliminating interlaminar delamination in the sandwich beam. Also, the existing special reinforcement causes stress concentrations, and the core is not effectively connected, which directly affects the stiffness of the beam. To address this, a novel tapered epoxy polyurethane reinforcement adhesive film is proposed, whose reinforcement thickness gradually tapers as it enters the core material. This minimizes stress concentrations at the interface, preventing excessive adhesive squeeze-out during the bonding process, and improves the stiffness of the beam. Results indicate the proposed model avoids the formation of micro cracks, interlaminar delamination, buckling, and local deformations, and effectively improves the stiffness of the beam.

이축압축 조건에서 실험체/재하판 경계면상의 마찰저항 감소를 위한 롤러 지지된 피스톤 형태의 하중재하판의 개발 (Development of a roller supported piston type loading platen reducing the frictional restraint along the interfaces between the specimen and platens under the biaxial loading condition)

  • 사공명;김세철;이준석;박두희
    • 한국터널지하공간학회 논문집
    • /
    • 제10권3호
    • /
    • pp.303-312
    • /
    • 2008
  • 암석의 물성평가 및 파괴모델 실험을 위하여 다축압축 실험이 자주 사용된다. 다축압축 실험을 통한 암반의 거동 평가시 정확한 결과의 산출을 위하여 실험체와 가압판 경계면에서의 경계조건에 대한주의를 기울일 필요가 있다. 일반적으로 철제로 된 일체형 가압판의 사용시 실험체의 경계면과 하중재하판사이에서 발생하는 마찰저항으로 인하여 실험체 경계부에서부터 응력회전 현상이 발생하여 경계면에서부터 작용하는 외력의 방향은 회전하게 된다. 이와 같은 실험체/하중재하판 경계면 사이에서 발생하는 마찰저항을 감소시키기 위하여 다양한 방법이 제시되었다. 그 중 대표적인 예가 빗살구조의 하중재하판이다. 본 논문에서는 빗살구조의 하중재하판의 단점을 극복하고 하중재하판의 공간이 상대적으로 덜 차지하는 롤러로 지지된 피스톤 형태의 하중재하판을 소개하고 있다. 롤러로 지지된 피스톤 형태의 하중재하판은 지지강성이 충분한 짧은 피스톤 후면에 샤프트 형태의 롤러를 설치하여 실험체의 변형과 동시에 각 피스톤이 동반하여 거동하도록 구성되었다. 본 논문에서는 롤러 지지된 피스톤의 구조 상세 및 요구되는 기능에 대한 검증을 위하여 측면부 마찰저항 실험과 이축압축 실험이 수행되었으며 실험결과와 수치해석 결과의 비교를 통하여 장비의 적용성에 대한 검증이 이루어 졌다.

  • PDF

Are "Unstable" Burst Fractures Really Unstable?

  • Woo, Jun Hyuk;Lee, Hyun Woo;Choi, Hong June;Kwon, Young Min
    • Journal of Korean Neurosurgical Society
    • /
    • 제64권6호
    • /
    • pp.944-949
    • /
    • 2021
  • Objective : The stability is an important factor to decide the treatment plan in thoracolumbar burst fracture patients. Patients with an unstable burst fracture generally need operative management. Decrease in vertebral body height, local kyphosis, involvement of posterior column, and/or canal compromise are considered important factors to determine the treatment plan. On the other hand, in thoracolumbar injury classification system (TLICS), surgery is recommended in patients with TLICS of more than 5 points. The purpose of this study was to apply the TLICS score in patients with thoracolumbar burst fractures and to distinguish the differences of treatment plan on burst fracture. Methods : All patients, diagnosed as a thoracolumbar burst fracture between January 2006 and February 2019 were included in this study. Unstable thoracolumbar burst fracture was defined as burst fracture with neurologic deficit, three-column injury, kyphosis over 30 degrees, decrease of anterior body height over 40 percent and canal comprise more than 50%. TLICS score was measured with morphology, neurological involvement and posterior ligamentous complex integrity. The existence of instability was compared with TLICS score. Results : Total 233 patients (131 men, 102 women) were included in this study. In Denis classification, 51 patients (21.9%) diagnosed as stable burst fracture while 182 patients (78.1%) had unstable burst fracture. According to TLICS, 72 patients (30.9%) scored less than 4, while 161 patients (69.1%) scored 4 or more. All the patients with stable burst fracture scored 2 in TLICS. Twenty-one patients (9.0) scored 2 in TLICS but diagnosed as unstable burst fracture. Thirteen patients had over 40% of vertebra body compression, four patients had more than 50% of canal compromise, three patients had both body compression over 40% and kyphosis over 30 degrees, one patients had both body compression and canal compromise. Fifteen patients presented kyphosis over 30 degrees, and three (20%) of them scored 2 in TLICS. Seventy-three patients presented vertebral body compression over 40% and 17 (23.3%) of them scored 2 in TLICS. Fifty-three patients presented spinal canal compromise more than 50%, and five (9.4%) of them scored 2 in TLICS. Conclusion : Although the instability of thoracolumbar burst fracture was regarded as a critical factor for operability, therapeutic strategies by TLICS do not exactly match with the concept of instability. According to the concept of TLICS, it should be reconsidered whether the unstable burst fracture truly unstable to do operation.

리브 보강된 콘크리트 충전 HSS 가새부재의 이력 거동 (Seismic Behavior of Concrete-Filled HSS Bracing Members Reinforced by Rib)

  • 한상환;여승민;김욱태
    • 한국강구조학회 논문집
    • /
    • 제17권1호통권74호
    • /
    • pp.53-62
    • /
    • 2005
  • 본 연구의 목적은 가새 골조에서 사용되는 가새 부재를 보강하여 가새 골조의 이력 거동을 향상시키는 것이다. HSS(Hollow Structural Section) 가새 부재는 국부 좌굴의 발생으로 인하여 인장측 성능에 비해 압축측 성능이 취약한 단점이 있다. 국부 좌굴의 심각성을 감소시키기 위하여 가새 부재에 콘크리트를 충전하는 방법이 사용되었다. Lee and Goel(1987)의 연구 결과에 따르면 콘크리트 충전은 HSS 가새 부재의 국부좌굴의 심각성을 감소시켜 파괴 수명을 증가시켰으나, 가새 부재 중앙부의 국부좌굴을 방지하지 못하여 지속적인 압축 강도의 저감이 나타났다. 따라서 본 연구에서는 가새 부재의 압축 강도를 증가시키고 중앙부의 국부 좌굴을 방지하기 위하여 콘크리트 충전 HSS 가새 부재의 중앙부를 리브로 보강한 실험체를 제작하여 실험하였다. 이를 위하여 리브 보강길이를 변수로 한 총 4개의 실물 크기의 가새 부재를 제작하였다. 하중은 압축과 인장이 대칭인 하중이력을 사용하였다. 본 실험에서 좌굴 모드, 사이클 최대 압축강도와 에너지 소산능력에서 나타난 리브 보강 가새 부재의 성능은 리브 보강길이에 따라 다르게 나타났으며, 63%의 길이로 보강한 실험체가 가장 우수한 성능을 나타내었다.

Experimental and numerical studies on the behaviour of corroded cold-formed steel columns

  • Nie, Biao;Xu, Shanhua;Zhang, Haijiang;Zhang, Zongxing
    • Steel and Composite Structures
    • /
    • 제35권5호
    • /
    • pp.611-625
    • /
    • 2020
  • Experimental investigation and finite element analysis of corroded cold-formed steel (CFS) columns are presented. 11 tensile coupon specimens and 6 stub columns of corroded CFS that had a channel section of C160x60x20 were subjected to monotonic tensile tests and axial compression tests, respectively. The degradation laws of the mechanical properties of the tensile coupon specimens and stub columns were analysed. An appropriate finite element model for the corroded CFS columns was proposed and the influence of local corrosion on the stability performance of the columns was studied by finite element analysis. Finally, the axial capacity of the experimental results was compared with the predictions obtained from the existing design specifications. The results indicated that with an increasing average thickness loss ratio, the ultimate strength, elastic modulus and yield strength decreased for the tensile coupon specimens. Local buckling deformation was not noticeable until the load reached about 90% of the ultimate load for the non-corroded columns, while local buckling deformation was observed when the load was only 40% of the ultimate load for the corroded columns. The maximum reduction of the ultimate load and critical buckling load was 57% and 81.7%, respectively, compared to those values for the non-corroded columns. The ultimate load of the columns with web thickness reduced by 2 mm was 53% lower than that of the non-corroded columns, which indicates that web corrosion most significantly affects the bearing capacity of the columns with localized corrosion. The results predicted using the design specifications of MOHURD were more accurate than those predicted using the design specifications of AISI.

Structural Performance of 800 MPa High-Strength Steel Members and Application to Highrise and Mega Building Structures

  • Lee, Cheol-Ho
    • 국제초고층학회논문집
    • /
    • 제6권3호
    • /
    • pp.249-259
    • /
    • 2017
  • The use of high-strength steels in construction of highrise and mega building structures can bring about many technological advantages from fabrication to erection. However, key design criteria such as local and lateral stability in current steel design specifications were developed based on tests of ordinary steels which have stress-strain characteristics very different from that of high strength steels. A series of tests on 800 MPa tensile strength steel (HSA800) members are summarized in this paper which were conducted to investigate the appropriateness of extrapolating current ordinary-steel based design criteria to high strength steels. 800 MPa I-shape beam specimens designed according to flange local buckling (FLB) criteria of the AISC Specification developed a sufficient strength for elastic design and a marginal rotation capacity for plastic design. It is shown that, without introducing distinct and significant yield plateau to the stress-strain property of high-strength steel, it is inherently difficult to achieve a high rotation capacity even if all the current stability limits are met. 800 MPa I-shape beam specimens with both low and high warping rigidity exhibited sufficient lateral torsional buckling (LTB) strength. HSA800 short-column specimens with various edge restraint exhibited sufficient local buckling strength under uniform compression and generally outperformed ordinary steel specimens. The experimental P-M strength was much higher than the AISC nominal P-M strength. The measured residual stresses indicated that the impact of residual stress on inelastic buckling of high-strength steel is less. Cyclic seismic test results showed that HSA800 members have the potential to be used as non-ductile members or members with limited ductility demand in seismic load resisting systems. Finally, recent applications of 800 MPa high strength steel to highrise and mega building structures in Korea are briefly presented.

Study on mechanism of macro failure and micro fracture of local nearly horizontal stratum in super-large section and deep buried tunnel

  • Li, Shu-cai;Wang, Jian-hua;Chen, Wei-zhong;Li, Li-ping;Zhang, Qian-qing;He, Peng
    • Geomechanics and Engineering
    • /
    • 제11권2호
    • /
    • pp.253-267
    • /
    • 2016
  • The stability of surrounding rock will be poor when the tunnel is excavated through nearly horizontal stratum. In this paper, the instability mechanism of local nearly horizontal stratum in super-large section and deep buried tunnel is revealed by the analysis of the macro failure and micro fracture. A structural model is proposed to explain the mechanics of surrounding rock collapse under the action of stress redistribution and shed light on the macroscopic analytical approach of the stability of surrounding rock. Then, some highly effective formulas applied in the tunnel engineering are developed according to the theory of mixed-mode micro fracture. And well-documented field case is made to demonstrate the effectiveness and accuracy of the proposed analytical methods of mixed-mode fracture. Meanwhile, in order to make the more accurate judgment about yield failure of rock mass, a series of comprehensive failure criteria are formed. In addition, the relationship between the nonlinear failure criterion and $K_I$ and $K_{II}$ of micro fracture is established to make the surrounding rock failure criterion more comprehensive and accurate. Further, the influence of the parameters related to the tension-shear mixed-mode fracture and compression-shear mixed-mode fracture on the propagation of rock crack is analyzed. Results show that ${\sigma}_3$ changes linearly with the change of ${\sigma}_1$. And the change rate is related to ${\beta}$, angle between the cracks and ${\sigma}_1$. The proposed simple analytical approach is economical and efficient, and suitable for the analysis of local nearly horizontal stratum in super-large section and deep buried tunnel.

전역 및 국부 기하 특성을 반영한 메쉬 분할 (A Mesh Segmentation Reflecting Global and Local Geometric Characteristics)

  • 임정훈;박영진;성동욱;하종성;유관희
    • 정보처리학회논문지A
    • /
    • 제14A권7호
    • /
    • pp.435-442
    • /
    • 2007
  • 본 논문에서는 3D 메쉬 모델의 텍스쳐 매핑, 단순화, 모핑, 압축, 형상정합 등 다양한 분야에 응용될 수 있는 메쉬분할 문제를 다룬다. 메쉬 분할은 주어진 메쉬를 서로 떨어진 집합(disjoint sets)으로 나누는 과정으로서, 본 논문에서는 메쉬의 전역적 및 국부적 기하 특성을 동시에 반영하여 메쉬를 분할하는 방법을 제시하고자 한다. 먼저 주어진 메쉬의 국부적 기하 특성인 곡률 정보와 전역적 기하 특성인 볼록성을 이용하여 메쉬 정점들 중 첨예정점(sharp vertex)을 추출하고, 모든 첨예정점들 간의 유클리디언 거리에 기반한 $\kappa$-평균군집화 기법[26]을 적용하여 첨예 정점들을 분할한다. 분할된 첨예정점에 속하지 않는 나머지 정점들에 대해서는 유클리디언 거리상 가까운 군집으로 병합하여 최종적인 메쉬분할이 이루어진다. 또한 본 논문에서 제안한 메쉬분할 방법을 구현하여 여러 메쉬 모델에 대해 실험 결과를 보여준다.

폐단면리브로 보강된 일축압축을 받는 복합적층판의 국부좌굴강도 증가효과 (Increasing Effect in Local Buckling Strength of Laminated Composite Plates Stiffened with Closed-section Ribs under Uniaxial Compression)

  • 황수희;김유식;최병호
    • 복합신소재구조학회 논문집
    • /
    • 제4권2호
    • /
    • pp.39-44
    • /
    • 2013
  • This study is aimed to examine the influence of the rotational stiffness of U-shaped ribs on the local buckling behaviors of laminated composite plates. Applying the orthotropic plates with eight layers of the layup $[(0^{\circ})4]s$ and $[(0^{\circ}/90^{\circ})2]s$, 3-dimensional finite element models for the U-rib stiffened plates were setup by using ABAQUS and then a series of eigenvalue analyses were conducted. There is a need to develope a simple design equation to establish the rotational stiffness effect, which could be easily quantified by comparing the theoretical critical stress equation for laminated composite plates with elastic restraints based on the Classical laminated plate theory. Through the parametric numerical studies, it is confirmed that there should clearly exist an increasing effect of local plate buckling strength due to the rotational stiffness by closed-section ribs. An applicable coefficient for practical design should be verified and proposed for future study. This study will contribute to the future study for establishing an increasing coefficient for the design strength and optimum design of U-rib stiffened plates.