• Title/Summary/Keyword: local collapse

Search Result 211, Processing Time 0.027 seconds

Bending Performance Evaluation of Reinforced Aluminum Square Tube Beams (보강 알루미늄 사각관 보의 굽힘 성능평가)

  • Lee Sung-Hyuk;Choi Nak-Sam
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.171-180
    • /
    • 2005
  • Bending performances of aluminum square tube beams reinforced by aluminum plates under three point bending loads have been evaluated using experimental tests combined with theoretical and finite element analyses. A finite element simulation for the three-point bending test was performed. Basic properties of aluminum materials used for initial input data of the finite element simulation were obtained from the true stress-true strain curves of specimens which had been extracted from the Al tube beams. True stresses were determined from applied loads and cross-sectional area records of a tensile specimen with a rectangular cross-section by real-time photographing, and true strains were obtained from in-situ local elongation measurements of the specimen gage portion by the multi-point scanning laser extensometer. Six kinds of aluminum tube beam specimens adhered by aluminum plates were employed fur the bending test. The bending deformation behaviors up to the maximum load described by the numerical simulation were in good agreement with experimental ones. After passing the maximum load, reinforcing plate was debonded from the aluminum tube beam. An aluminum tube beam strengthened by aluminum plate on the upper web showed an excellent bending capability.

Experimental investigations on the failure modes of ring-stiffened cylinders under external hydrostatic pressure

  • Cho, Sang-Rai;Muttaqie, Teguh;Do, Quang Thang;Kim, Sinho;Kim, Seung Min;Han, Doo-Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.6
    • /
    • pp.711-729
    • /
    • 2018
  • This paper reports on the experimental investigations on the failure modes of ring-stiffened cylinder models subjected to external hydrostatic pressure. Nine models were welded from general structural steel. The shells were initially formed by cold-rolling, and flat-bar ring frames were welded to the shell. The hydrostatic pressure tests were conducted by using water as the medium in pressure chambers. The details of the preparation and main test were briefly explained. The investigation identified the consequence of the structural failure modes, including: shell yielding, local shell buckling between ring stiffeners, overall buckling of the shell together with the stiffeners, and interactive buckling mode combining local and overall buckling. In addition, the ultimate strengths were predicted by using existing design codes. Non-linear numerical computations were also conducted by employing the actual imperfection coordinates. Finally, accuracy and reliability of the predictions of design formulae and numerical were substantiated with the test results.

Experimental damage evaluation of prototype infill wall based on forced vibration test

  • Onat, Onur
    • Advances in concrete construction
    • /
    • v.8 no.2
    • /
    • pp.77-90
    • /
    • 2019
  • This paper aims to investigate vibration frequency decrease (vibration period elongation) of reinforced concrete (RC) structure with unreinforced infill wall and reinforced infill wall exposed to progressively increased artificial earthquake load on shaking table. For this purpose, two shaking table experiments were selected as a case study. Shaking table experiments were carried on 1:1 scaled prototype one bay one storey RC structure with infill walls. The purpose of this shaking table experiment sequence is to assess local behavior and progressive collapse mechanism. Frequency decrease and eigen-vector evolution are directly related to in-plane and out-of-plane bearing capacities of infill wall enclosure with reinforced concrete frame. Firstly, frequency decrease-damage relationship was evaluated on the base of experiment results. Then, frequency decrease and stiffness degradation were evaluated with applied Peak Ground Acceleration (PGA) by considering strength deterioration. Lastly, eigenvector evolution-local damage and eigenvector evolution-frequency decrease relationship was investigated. Five modes were considered while evaluating damage and frequency decrease of the tested specimens. The relationship between frequency decrease, stiffness degradation and damage level were presented while comparing with Unreinforced Brick Infill (URB) and Reinforced Infill wall with Bed Joint Reinforcement (BJR) on the base of natural vibration frequency.

Establishment of Early Warning System of Steep Slope Failure Using Real-time Rainfall Data Analysis (실시간 강우자료분석을 활용한 산사태 경보시스템 연구)

  • Kim, Sung-Wook;Choi, Eun-Kyoung;Park, Dug-Keun;Park, Jung-Hoon;Son, Sung-Gon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.253-262
    • /
    • 2010
  • In this study, localized heavy rainfall occurred during the collapse of steep slopes adjacent to the construction site and to ensure the safety of residents to build an early warning system was performed. Forecast/Alert range was estimated based on vulnerability landslide map and past disaster history. And established a critical line in consideration of the characteristics of local rainfall and operating a snake line, the study calculated causing and non-causing points. Also, be measured in real-time analysis of rainfall data in conjunction with the system before the steep slope failure occurred forecast/Alert System is presented.

  • PDF

Improving buckling response of the square steel tube by using steel foam

  • Moradi, Mohammadreza;Arwade, Sanjay R.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.6
    • /
    • pp.1017-1036
    • /
    • 2014
  • Steel tubes have an efficient shape with large second moment of inertia relative to their light weight. One of the main problems of these members is their low buckling resistance caused from having thin walls. In this study, steel foams with high strength over weight ratio is used to fill the steel tube to beneficially modify the response of steel tubes. The linear eigenvalue and plastic collapse FE analysis is done on steel foam filled tube under pure compression and three point bending simulation. It is shown that steel foam improves the maximum strength and the ability of energy absorption of the steel tubes significantly. Different configurations with different volume of steel foam and composite behavior is investigated. It is demonstrated that there are some optimum configurations with more efficient behavior. If composite action between steel foam and steel increases, the strength of the element will improve, in a way that, the failure mode change from local buckling to yielding.

Investigations of Structural Behaviors of Steel Tower Structures by Frame Shape Variation (철탑구조의 트러스형상 변화에 따른 구조거동 분석)

  • Moon, Mi Young;Kim, Woo Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.4
    • /
    • pp.261-268
    • /
    • 2017
  • The purpose of this study is to analyze the ultimate strength and behavior of triangular and rectangular frames in steel towers. Investigations of collapse mechanism including local and global failures of partial frame are carried out through finite element analysis and small scaled experiments. Ultimate strength and deformation are investigated in case of shape variations with change of the interior and exterior frames. The efficiency of rectangular frame saving sub-brace members are verified with comparisons of the ultimate strength of triangular frames.

Review of Current Design Practice for Soil-Reinforced Segmental Retaining Walls (보강토 옹벽의 설계 현황에 대한 고찰)

  • 유충식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.09a
    • /
    • pp.41-50
    • /
    • 2000
  • Segmental retaining wall market in Korea has been growing dramatically since late 1990s in both engineered and non-engineered applications. Despite the inherent conservatism in the current design approaches, numerous major and minor structural problems have been reported during and after construction, covering a range of minor structural damage to total collapse. Much still needs to be investigated to fill the gap between the theory and the practice. This paper reviews several design issues with regard to the segmental retaining walls such as the selection of shear strength parameters for backfill soil, local stability, and tiered wall construction. In addition, the effects of shear strength parameters and the fundamental behavior of tiered SRWs are examined based on the results of finite element analysis. Implications of the findings from this study to current design practices were discussed in detail.

  • PDF

An Experimental Study on the Behaviors of RC Beams Strengthened in Shear by Thin Steel Plate and Carbon Fiber Sheet (강박판 및 탄소섬유판으로 전단보강된 철근 콘크리트 보의 거동에 관한 실험적 연구)

  • 최종수;이대형;손창호;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.219-223
    • /
    • 1995
  • Since the mid of 1970's, the construction of infrastructure has been booming and accelerating to keep up with rapid economic growth. Fast achievement of most construction activities has caused unfavorable effects of civil petitions associated with damages and nuisances due to last hasty works. it is well known that the falling down of Sungsoo bridge and the collapse of Sampoong department and other structures have occurred because of the construction not conforming with the specification, and thereby incurred enormous loss of life and property. Now a days. a periodic inspection and maintenance have been strongly interested on aged RC structures, of repair and reinforcement technique in the country, most repairing and reinforcing works have been performed on the basis of the guidance of few experienced local company in this field.

  • PDF

Dynamic nonlinear member failure propagation in truss structures

  • Malla, Ramesh B.;Nalluri, Butchi B.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.2
    • /
    • pp.111-126
    • /
    • 2000
  • Truss type structures are attractive to a variety of engineering applications on earth as well as in space due to their high stiffness to mass ratios and ease of construction and fabrication. During the service life, an individual member of a truss structure may lose load carrying capacity due to many reasons, which may lead to collapse of the structure. An analytical and computational procedure has been developed to study the response of truss structures subject to member failure under static and dynamic loadings. Emphasis is given to the dynamic effects of member failure and the propagation of local damage to other parts of the structure. The methodology developed is based on nonlinear finite element analysis technique and considers elasto-plastic material nonlinearity, postbuckling of members, and large deformation geometric nonlinearity. The pseudo force approach is used to represent the member failure. Results obtained for a planar nine-bay indeterminate truss undergoing sequential member failure show that failure of one member can initiate failure of several members in the structure.

Shock response analysis to underwater explosion using Hydrocode (Hydrocode를 이용한 수중폭발 충격응답 해석)

  • Lee, Sang-Gab;Park, Chung-Kyu;Kweon, Jung-Il;Jeong, Sung-Min
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1174-1179
    • /
    • 2000
  • In recent years, the structural shock response to underwater explosion has been studied as much, or more, through numerical simulations than through testing for several reasons. Very high costs and sensitive environmental concerns have kept destructive underwater explosion testing to a minimum. Increase of simulation capabilities and sophisticated simulation tools has made numerical simulations more efficient analysis methods as well as more reliable testing aids. For the simulation of underwater explosions against, surface ships or submerged structures one has to include the effects of the explosive shock wave, the motion of the gaseous reactive products, the local cavitation collapse, the different nonlinear structural properties and the complex fluid-structure interaction phenomena. In this study, as benchmark step for the validation of hydrocode LS/DYNA3D and of technology of fluid-structure interaction problems, two kinds of cavitation problems are analyzed and structural shock response of floating ship model are compared with experimental result.

  • PDF