• Title/Summary/Keyword: local buckling analysis

Search Result 287, Processing Time 0.025 seconds

Effect of Wrinkling on Failure Behavior of Thin Membranes (얇은 막재에서 주름이 파괴거동에 미치는 영향)

  • Kim, Young-Ah;Woo, Kyeong-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.11
    • /
    • pp.1005-1012
    • /
    • 2011
  • In this paper, the effect of wrinkling on the failure behavior of thin membrane was studied using geometrically nonlinear shell element post-buckling analysis with global-local analysis strategy. In the analysis, double-edge notched and single-edge notched tensile specimen configurations were considered. The analyses were performed for both cases with allowing and suppressing the wrinkling deformation. The results were investigated focusing on the effect of wrinkle development on the variation of J-integral values at the cut tip. The effect of cut lengths and the specimen lengths were also systematically studied.

Consideration for AFRAMAX TANKER Applied Common Structural Rules (AFRAMAX TANKER의 CSR 적용에 대한 고찰)

  • Kim, Sung-In;Kim, Young-Nam;Kim, Gyeong-Rae
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2007.09a
    • /
    • pp.99-106
    • /
    • 2007
  • The IACS Common Structural Rules are to be applied for double hull tanker of more than 150m length with contracted after 1 April 2006. The objectives of the rules are to make more robust, safer ship and to ensure transparency of the technical background. In compliance of CSR, we had carried out prescriptive rules scantling determination and 3-D hold FE analysis of AFRAMAX TANKER. Prescriptive rules scantling determines the minimum required scantling, hull-girder longitudinal bending and shear strength, hull girder ultimate strength, local strength of plate and stiffener, strength of primary supporting member and fatigue assessment of the longitudinal stiffener end connections to the transverse bulkhead. 3-D hold FE analysis assesses the structural adequacy of the vessel's primary hull structure and major supporting members using yielding and buckling failure modes. So we could verify the strength assessment of AFRAMAX TANKER applied CSR.

  • PDF

Optimum Design of the Power Yacht Based on Micro-Genetic Algorithm

  • Park, Joo-Shin;Kim, Yun-Young
    • Journal of Navigation and Port Research
    • /
    • v.33 no.9
    • /
    • pp.635-644
    • /
    • 2009
  • The optimum design of power yacht belongs to the nonlinear constrained optimization problems. The determination of scantlings for the bow structure is a very important issue with in the whole structural design process. The derived design results are obtained by the use of real-coded micro-genetic algorithm including evaluation from Lloyd's Register small craft guideline, so that the nominal limiting stress requirement can be satisfied. In this study, the minimum volume design of bow structure on the power yacht was carried out based on the finite element analysis. The target model for optimum design and local structural analysis is the bow structure of a power yacht. The volume of bow structure and the main dimensions of structural members are chosen as an objective function and design variable, respectively. During optimization procedure, finite element analysis was performed to determine the constraint parameters at each iteration step of the optimization loop. optimization results were compared with a pre-existing design and it was possible to reduce approximately 19 percents of the total steel volume of bow structure from the previous design for the power yacht.

Numerical Parametric Analysis of the Ultimate Loading-Capacity of Channel Purlins with Screw-Fastened Sheeting

  • Zhang, Yingying;Xue, Jigang;Song, Xiaoguang;Zhang, Qilin
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1801-1817
    • /
    • 2018
  • This paper presents the numerical parametric analysis on the loading capacity of Channel purlins with screw-fastened sheeting, in which the effects of anti-sag bar and corrugated steel sheet on the ultimate capacity are studied. Results show that the setup of anti-sag bars can reduce the deformations and improve the ultimate capacity of C purlins. The traditional method of setting the anti-sag bars in the middle of the web is favorable. The changing of sheeting type, sheeting thickness and rib spacing has significant effects on the ultimate capacity of C purlins without anti-sag bars, compared with those with anti-sag bars. The proposed design formulas are relatively consistent with the calculations of EN 1993-1-3:2006, which is different from those of GB 50018-2002.

Limit States and Corresponding Seismic Fragility of a Pipe Rack for Maintaining Operation (운전성 유지를 위한 파이프랙의 한계상태와 지진취약도)

  • Kim, Juram; Hong, Kee-Jeung;Hwang, Jin-Ha
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.283-291
    • /
    • 2023
  • Unlike other facilities, maintaining processes is essential in industrial facilities. Pipe racks, which support pipes of various diameters, are important structures used in industrial facilities. Since the transport process of pipes directly affects the operation of industrial facilities, a fragility curve should be derived based on considering not only the pipe racks' structural safety but also the pipes' transport process. There are several studies where the fragility curves have been determined based on the structural behavior of pipe racks. However, few studies consider the damage criteria of pipes to ensure the transportation process, such as local buckling and tensile failure with surface defects. In this study, an analysis model of a typical straight pipe rack used in domestic industrial facilities is constructed, and incremental dynamic analysis using nonlinear response history analysis is performed to estimate the parameters of the fragility curve by the maximum likelihood estimation. In addition, the pipe rack's structural behavior and the pipe's damage criteria are considered the limit state for the fragility curve. The limit states considered in this paper to evaluate fragility curves are more reasonable to ensure the transportation process of the pipe systems.

Compression Tests for Unstiffened Steel Plate-Concrete Structures with Variation of B/t Ratio (스터드 간격과 강판두께의 비를 변수로 한 비보강 강판-콘크리트 구조의 압축실험)

  • Choi, Byong Jeong;Han, Hong Soo;Kim, Won Ki;Lee, Seung Joon;Kim, Woo Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.4
    • /
    • pp.561-570
    • /
    • 2008
  • The primary object of the paper is to identify the compression forces and inelastic failure behavior using steel plate-concrete structures. The compression tests were carried out for the three types of B/tratios by 25, 33 and 50. The tests proved that the compressive strength of the SC structures can be estimated by the summation of strengths both of the steel plate and concrete. The buckling of the steel plates had been occurring at the plates between studs. The empirical estimation of compressive strength for unstiffened SC structures under compressive loadings was suggested. The buckling behavior was also compared with the results of the finite element analysis.

Seismic behavior of circular-in-square concrete-filled high-strength double skin steel tubular stub columns with out-of-code B/t ratios

  • Jian-Tao Wang;Yue Wei;Juan Wang;Yu-Wei Li;Qing Sun
    • Steel and Composite Structures
    • /
    • v.49 no.4
    • /
    • pp.441-456
    • /
    • 2023
  • Aiming at the development trend of light weight and high strength of engineering structures, this paper experimentally investigated the seismic performance of circular-in-square high-strength concrete-filled double skin steel tubular (HCFDST) stub columns with out-of-code width-to-thickness (B/t) ratios. Typical failure mode of HCFDST stub columns appeared with the infill material crushing, steel fracture and local buckling of outer tubes as well as the inner buckling of inner tubes. Subsequently, the detailed analysis on hysteretic curves, skeleton curves and ductility, energy dissipation, stiffness degradation and lateral force reduction was conducted to reflect the influences of hollow ratios, axial compression ratios and infill types, e.g., increasing hollow ratio from 0.54 to 0.68 and 0.82 made a slight effect on bearing capacity compared to the ductility coefficients; the higher axial compression ratio (e.g., 0.3 versus 0.1) significantly reduced the average bearing capacity and ductility; the HCFDST column SCFST-6 filled with concrete obviously displayed the larger initial secant stiffness with a percentage 34.20% than the column SCFST-2 using engineered cementitious composite (ECC); increasing hollow ratios, axial compression ratios could accelerate the drop speed of stiffness degradation. The out-of-code HCFDST stub columns with reasonable design could behave favorable hysteretic performance. A theoretical model considering the tensile strength effect of ECC was thereafter established and verified to predict the moment-resisting capacity of HCFDST columns using ECC. The reported research on circular-in-square HCFDST stub columns can provide significant references to the structural application and design.

Experimental and analytical investigation of high-strength concrete-filled steel tube square columns subjected to flexural loading

  • Chung, Kyung-Soo;Kim, Jin-Ho;Yoo, Jung-Han
    • Steel and Composite Structures
    • /
    • v.14 no.2
    • /
    • pp.133-153
    • /
    • 2013
  • The concrete-filled steel tube (CFT) columns have several benefits of high load-bearing capacity, inherent ductility and toughness because of the confinement effect of the steel tube on concrete and the restraining effect of the concrete on local buckling of steel tube. However, the experimental research into the behavior of square CFT columns consisting of high-strength steel and high-strength concrete is limited. Six full scale CFT specimens were tested under flexural moment. The CFT columns consisted of high-strength steel tubes ($f_y$ = 325 MPa, 555 MPa, 900 MPa) and high-strength concrete ($f_{ck}$ = 80 MPa and 120 MPa). The ultimate capacity of high strength square CFT columns was compared with AISC-LRFD design code. Also, this study was focused on investigating the effect of high-strength materials on the structural behavior and the mathematical models of the steel tube and concrete. Nonlinear fiber element analyses were conducted based on the material model considering the cyclic bending behavior of high-strength CFT members. The results obtained from the numerical analyses were compared with the experimental results. It was found that the numerical analysis results agree well with the experimental results.

Non-Prismatic Beam Element for Nonlinear Seismic Analysis of Steel Moment Frames I: Element Formulation (강재 모멘트 골조의 비선형 지진 해석을 위한 부등단면 보 요소 I: 요소개발)

  • Hwang, Byoung-Kuk;Jeon, Seong-Min;Kim, Kee-Dong;Ko, Man-Gi
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.27-35
    • /
    • 2007
  • This study presents a non -prismatic beam element for modeling the elastic and inelastic behavior of the steel beam, which has the post-Northridge connections in steel moment frames that are subjected to earthquake ground motions. The elastic stiffness matrix for non-prismatic members with reduced beam section (RES) connection is in the closed-form. The plasticity model is of a discrete type and is composed of a series of nonlinear hinges connected by rigid links. The hardening rules can model the inelastic behavior for monotonic and random cyclic loading, and the effects of local buckling. Verification and calibration of the model are presented in a companion paper.

Crippling Analysis of Z-Section Composite Stringers (Z-단면 복합재 스트링거의 크리플링 해석)

  • 권진회
    • Composites Research
    • /
    • v.12 no.6
    • /
    • pp.65-73
    • /
    • 1999
  • Crippling stress and failure behavior of Z-section graphite/epoxy composite laminated stringers are investigated by the nonlinear finite element method. Stringers are idealized using 9-node laminated shell element. The complete unloading model is introduced into the finite element method for the progressive failure analysis. A modified Riks method is used to trace the post-failure equilibrium path after local buckling. Finite element results are validated with previous experimental results. The results show that the most important parameter affecting the crippling stress of Z-section stringers is the flange width. In terms of stacking sequence. the highest cripping stress is found at the stringer with $[{\pm}45/0/90]s$ lamination.

  • PDF