• Title/Summary/Keyword: local air temperature

Search Result 414, Processing Time 0.029 seconds

Heat Transfer Characteristics of the Spherical Capsule Storage System Using Paraffins

  • Cho, Keum-Nam;Choi, S. H.
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.6
    • /
    • pp.113-123
    • /
    • 1998
  • The present study is to investigate the effect of experimental parameters on the heat transfer characteristics of a spherical capsule storage system using paraffins. N-Tetradecane and mixture of n-Tetradecane 40% and n-Hexadecane 60% were used as paraffins. Water with inorganic material was also tested for the comparison. The experimental parameters were varied for the Reynolds number from 8 to 16 and for the inlet temperature from -7 to 2$^{\circ}C$. Measured local temperatures of spherical capsules in the storage tank were utilized to calculate charging and discharging times, dimensionless thermal storage amount, and the average heat transfer coefficients in the tank. Local charging and discharging times in the storage tank were significantly different. The effect of inlet temperature on charging time was larger than that on discharging time, but the effect of Reynolds number on charging time was smaller than that on discharging time. Charging time of paraffins was faster by 11~72% than that of water with inorganic material, but little difference of discharging time was found among them. The effect of Reynolds number on the dimensionless thermal storage was less during charging process and more during discharging process than the effect of inlet temperature. The effect of the inlet temperature and the Reynolds number on the average heat transfer coefficient of the storage tank was stronger during discharging process than during charging process. The average heat transfer coefficients of the spherical capsule system using paraffins were larger by 40% than those using water.

  • PDF

A Study for Characteristics of Stack Plume Dispersion under Various (다양한 대기풍속 및 대기온도 구배 조건에서의 공장 배출 가스의 확산 특성에 관한 연구)

  • Park, Il-Seouk
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.11
    • /
    • pp.773-780
    • /
    • 2010
  • The dispersion of plume which is emitted from a chimney is governed by a lot of factors: wind, local terrain, turbulence intensity of atmosphere, and temperature, etc. In this study, we numerically investigate the plume dispersions for various altitudinal temperature gradients and wind speeds. The normal atmosphere has the temperature decrease of $0.6^{\circ}C/100m$, however, actually the real atmosphere has the various altitudinal temperature profiles according to the meteorological factors. A previous study focused on this atmospheric temperature gradient which induces a large scale vertical flow motion in the atmosphere thus makes a peculiar plume dispersion characteristics. In this paper, the effects of the atmospheric temperature gradient as well as the wind speed are investigated concurrently. The results for the developing processes in the atmosphere and the affluent's concentrations at the ambient and ground level are compared under the various altitudinal temperature gradients and wind speeds.

The effect of forced convection on boiling heat transfer from a horizontal tube (수평 원관의 비등 열전달에서 강제대류의 영향)

  • 이승홍;이억수;정은행
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.558-568
    • /
    • 1998
  • This paper presents the results of experiments involving external forced convection on boiling heat transfer from electrically heated horizontal tube to water in cross flow. In these experiments, all of the following primary variables were varied: heat flux, cross flow velocity, pressure and degree of subcooling. Local surface temperatures were measured at nine peripheral positions. Surface temperature distributions are classified into four groups as a function of heat flux. The characteristics of the boiling curve at different velocity, degree of subcooling and pressure are examined.

  • PDF

Study of the local heat transfer characteristic on the louver fin by using the expansion model (확대 모델을 이용한 루버 휜의 국부 열전달 특성변화에 관한 연구)

  • Kim, Jung-Kuk;Koyama, Shigeru;Kuwahara, Ken;Park, Byung-Duck;Kim, Dong-Hwi;Sa, Yong-Cheol
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.227-232
    • /
    • 2008
  • The present study was investigated the local heat transfer characteristics and temperature distribution on the louver fin by using the expansion model. Heat transfer rate, frost mass and temperature distribution of the louver fin under frosting condition were experimentally investigated. Local heat transfer rate and heat flux on the louver were analyzed by the conduction heat transfer between top and lower part of the louver. The experimental key parameter was brine inlet temperature(-5, -10, $-15^{\circ}C$). The heat transfer performance and frost mass at brine temperature of $-15^{\circ}C$ were increased by maximum 3 time than the brine temperature of $-5^{\circ}C$. At all experimental case, local heat transfer rate and heat flux of the louver were almost symmetry at the louver number of 6. Especially, local heat transfer rate and heat flux were maximum increased on the louver number of 4 and 8.

  • PDF

Characteristics of Turbulent Lifted Flames in Coflow Jet with Initial Temperature Variations (동축류 제트에서 초기 온도 변화에 따른 난류 부상화염 특성)

  • Kim, K.N.;Won, S.H.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.15-20
    • /
    • 2004
  • Characteristics of turbulent lifted flames in coflow jet have been investigated by varying initial temperature through the heating of coflow air. In the turbulent regime, liftoff height increases linearly with fuel jet velocity and decreases nonlinearly as the coflow temperature increases. This can be attributed to the increase of turbulent propagation speed, which is strongly related to laminar burning velocity. Dimensionless liftoff heights are correlated well with dimensionless jet velocity, which are scaled with parameters determining local flow velocity and turbulent propagation speed. This implies that the turbulent lifted flames are stabilized by balance mechanism between local turbulent burning velocity and flow velocity. Blowout velocity can be obtained from the ratio of mixing time to chemical time. Comparing to previous researches, thermal diffusivity should be evaluated from the initial temperature instead of adiabatic flame temperature.

  • PDF

Characteristics of Turbulent Lifted Flames in Coflow Jet with Initial Temperature Variations (동축류 제트에서 초기 온도 변화에 따른 난류 부상화염 특성)

  • Kim, K.N.;Won, S.H.;Chung, S.H.
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.1
    • /
    • pp.32-38
    • /
    • 2004
  • Characteristics of turbulent lifted flames in coflow jet have been investigated by varying initial temperature through the heating coflow air. In the turbulent regime, liftoff height increases linearly with fuel jet velocity and decreases nonlinearly as the coflow temperature increases. This can be attributed to the increase of turbulent propagation speed, which is strongly related to laminar burning velocity. Dimensionless liftoff heights are correlated well with dimensionless jet velocity, which are scaled with parameters determining local flow velocity and turbulent propagation speed. This implies that the turbulent lifted flames are stabilized by balance mechanism between local turbulent burning velocity and flow velocity. Blowout velocity can be obtained from the ratio of mixing time to chemical time. Comparing to previous researches, thermal diffusivity should be evaluated from the initial temperature instead of adiabatic flame temperature.

  • PDF

A Study for Energy Separation of Vortex Tube using Air Supply System (I) - the effect of diameter of cold end orifice - (공기공급 시스템에 적용되는 Vortex Tube의 에너지 분리특성에 관한 연구(I) -저온출구 orifice의 직경변화에 의한 영향-)

  • 이병화;추홍록;상희선
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.9-18
    • /
    • 1998
  • The vortex tube is a simple device for separating a compressed gaseous fluid stream into two flows of high and low temperature without any chemical reactions. Recently, vortex tube is widely used to local cooler of industrial equipments and air supply system. The phenomena of energy separation through the vortex tube was investigated experimentally. This study is focused on the effect of the diameter of cold end orifice diameter on the energy separation. The experiment was carried out with various cold end orifice diameter ratio from 0.22 to 0.78 for different input pressure and cold air flow ratio. The experimental results were indicated that there are an optimum diameter of cold end orifice for the best cooling performance. The maximum cold air temperature difference was appeared when the diameter ratio of the cold end orifice was 0.5. The maximum cooling capacity was obtained when the diameter ratio of the cold end orifice was 0.6 and cold air flow ratio was 0.7.

  • PDF

Relationship between Thermal Low and Long-Range Transport of Air Pollutants (대기오염물질의 장거리 수송과 열적저기압의 관계)

  • 이화운;김유근;김해동;정우식;현명숙
    • Journal of Environmental Science International
    • /
    • v.10 no.2
    • /
    • pp.143-151
    • /
    • 2001
  • The atmospheric conditions and the transport mechanism of long-range transport of air pollutants from coastal area to inland area were investigated using regular meteorological data and air pollution data obtatined from the southeastern area of Korea. Daytime temperature over the inland area(Taegu) was higher than that over the coastal area(Pusan) and the temperature difference of about 5~6$^{\circ}C$ when the thermal low most fully developed and the sea level pressure over Taegu was lower than that over Pusan by about 4~5hPa at that time. Therefore this low pressure appeared to the thermally induced low. Air mass polluted from the coastal area during the morning period was transported inland area, at first by the sea breeze and by the large scale wind system toward the thermal low generated in the mountainous inland region. This was explained by the fact that the concentration of air pollutants over Taegu increased throughtout the late afternoon.

  • PDF

A Study for Energy Separation of Vortex Tube Using Air Supply System(II) - the effect of surface insulation - (공기공급 시스템에 적응되는 Vortex Tube의 에너지 분리특성에 관한 연구(II) -표면의 단열효과에 따른 영향-)

  • 방창훈;추홍록;유갑종
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.1
    • /
    • pp.3-9
    • /
    • 1999
  • The vortex tube is a simple device which splits a compressed gas stream into a cold stream and a hot stream without any chemical reactions. Recently, vortex tube is widely used to local cooler of industrial equipments and air supply system. In this study, the insulation effect of surface on the efficiency of vortex tube was performed experimentally. The experiment is carried out for nozzle area ratio of 0.194, diameter ratio of cold end orifice of 0.6 and input pressure ranging from 0.2Mpa to 0.5Mpa. The purpose of this study is focused on the effect of surface insulation of vortex tube with the variation of cold air mass flow ratio. The results indicate that the temperature difference of cold and hot air are higher about 12% and 30% than that of not insulated vortex tube respectively. Furthermore, for the insulated vortex tube, the similarity relation for the prediction of cold end temperature as the function of cold air mass flow ratio and input pressure is obtained.

  • PDF

공조 시스템용 DDC의 온라인 최적제어에 관한 연구

  • 안병천
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.11
    • /
    • pp.1072-1078
    • /
    • 2001
  • The real time optimal control algorithm of the DDC controller for chilled water and supply air temperature set-point of heating, ventilating, air-conditioning and refrigeration systems has been researched for minimization of the total power which is consumed by the chiller, chilled water pump and air handing unit fan. The study has been done by using TRNSYS program in order to analyze the central cooling system in terms of the environmental variables such as indoor cooling lead and wet-bulb temperature. This optimal control alogorithm saves more energy and is suitable for real time on-line control in comparison with conventional method.

  • PDF