• Title/Summary/Keyword: local adaptive smoothing

Search Result 23, Processing Time 0.017 seconds

A Study on Projection Image Restoration by Adaptive Filtering (적응적 필터링에 의한 투사영상 복원에 관한 연구)

  • 김정희;김광익
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.119-128
    • /
    • 1998
  • This paper describes a filtering algorithm which employs apriori information of SPECT lesion detectability potential for the filtering of degraded projection images prior to the backprojection reconstruction. In this algorithm, we determined m minimum detectable lesion sized(MDLSs) by assuming m object contrasts uniformly-chosen in the range of 0.0-1.0, based on a signal/noise model which provides the capability potential of SPECT in terms of physical factors. A best estimate of given projection image is attempted as a weighted combination of the subimages from m optimal filters whose design is focused on maximizing the local S/N ratios for the MDLS-lesions. These subimages show relatively larger resolution recovery effect and relatively smaller noise reduction effect with the decreased MDLS, and the weighting on each subimage was controlled by the difference between the subimage and the maximum-resolution-recovered projection image. The proposed filtering algoritym was tested on SPECT image reconstruction problems, and produced good results. Especially, this algorithm showed the adaptive effect that approximately averages the filter outputs in homogeneous areas and sensitively depends on each filter strength on contrast preserving/enhancing in textured lesion areas of the reconstructed image.

  • PDF

Monte Carlo Photon and Electron Dose Calculation Time Reduction Using Local Least Square Denoising Filters (국소 최소자승 잡음 감소 필터를 이용한 광자선 및 전자선 몬테칼로 선량 계산 시간 단축)

  • Cheong Kwang-Ho;Suh Tae-Suk;Cho Byung-Chul;Jin Hosang
    • Progress in Medical Physics
    • /
    • v.16 no.3
    • /
    • pp.138-147
    • /
    • 2005
  • The Monte Carlo method cannot have been used for routine treatment planning because of heavy time consumption for the acceptable accuracy. Since calculation time is proportional to particle histories, we can save time by decreasing the number of histories. However, a small number of histories can cause serious uncertainties. In this study, we proposed Monte Carlo dose computation time and uncertainty reduction method using specially designed filters and adaptive denoising process. Proposed algorithm was applied to 6 MV photon and 21 MeV electron dose calculations in homogeneous and heterogeneous phantoms. Filtering time was negligible comparing to Monte Carlo simulation time. The accuracy was improved dramatically in all situations and the simulation of 1 $\%$ to 10$\%$ number of histories of benchmark in photon and electron dose calculation showed the most beneficial result. The empirical reduction of necessary histories was about a factor of ten to fifty from the result.

  • PDF

Automatic Prostate Segmentation in MR Images based on Active Shape Model Using Intensity Distribution and Gradient Information (MR 영상에서 밝기값 분포 및 기울기 정보를 이용한 활성형상모델 기반 전립선 자동 분할)

  • Jang, Yu-Jin;Hong, Helen
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.2
    • /
    • pp.110-119
    • /
    • 2010
  • In this paper, we propose an automatic segmentation of the prostate using intensity distribution and gradient information in MR images. First, active shape model using adaptive intensity profile and multi-resolution technique is used to extract the prostate surface. Second, hole elimination using geometric information is performed to prevent the hole from occurring by converging the surface shape to the local optima. Third, the surface shape with large anatomical variation is corrected by using 2D gradient information. In this case, the corrected surface shape is often represented as rugged shape which is generated by the limited number of vertices. Thus, it is reconstructed by using surface modelling and smoothing. To evaluate our method, we performed the visual inspection, accuracy measures and processing time. For accuracy evaluation, the average distance difference and the overlapping volume ratio between automatic segmentation and manual segmentation by two radiologists are calculated. Experimental results show that the average distance difference was 0.3${\pm}$0.21mm and the overlapping volume ratio was 96.31${\pm}$2.71%. The total processing time of twenty patient data was 16 seconds on average.