• Title/Summary/Keyword: loading speed

Search Result 720, Processing Time 0.031 seconds

Settlement and Bearing Capacity of Roadbed Subjected to Tilting-train Loading in Various Ground Conditions

  • Jeon, Sang-Soo
    • International Journal of Railway
    • /
    • v.8 no.2
    • /
    • pp.35-41
    • /
    • 2015
  • Tilting-train is very attractive to the railroad users in the world due to the advantage of high speed in curved track using pre-existing infrastructure of railway. Tilting-train has a unique allowable speed and mechanism especially in curved track. In this work, when tilting-train is operated with the allowable speed, the behavior of roadbed is evaluated by examining its settlement and bearing capacity. Additionally, the stability of roadbed is estimated as the roadbed is in the condition of soft soil influenced by the weather effects and cyclic train loading. Numerical results show that the roadbed settlement satisfies the allowable settlement when the elastic modulus of upper roadbed should be greater than $5000t/m^2$.

A Expermental Study on the Dynamic Coefficients according to the Source Positions in Externally Pressurised Air-lubricated Journal Bearing with Two Row Sources (2열 외부가압 공기 저어널 베어링에서 공기 급기구 위치에 따른 동적계수에 관한 실험적 연구)

  • 이종렬;이준석;성승학;이득우
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.231-235
    • /
    • 2001
  • This paper has been presented the dynamic effect by the journal speed. eccentricity and source positions in order to overcome the defects of air bearing such as low stiffness and damping coefficient. Choosing the two row source position of air bearing is different from previous investigations in the side of pressure distribution of air film by the wedge effects. These optimal chooses of the two row source positions enable us to improve the performance of the film reaction force and loading force as making the high speed spindle. The results of investigated characteristics may be applied to precision devices like ultra-precision grinding machine and ultra high speed milling.

  • PDF

Technology of Minimized Damage during Loading of a Thin Wafer (박판 웨이퍼의 적재 시 손상 최소화 기술)

  • Lee, Jong Hang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.321-326
    • /
    • 2021
  • This paper presents a technique to minimize damaged wafers during loading. A thin wafer used in solar cells and semiconductors can be damaged easily. This makes it difficult to separate the wafer due to surface tension between the loaded wafers. A technique for minimizing damaged wafers is to supply compressed air to the wafer and simultaneously apply a small horizontal movement mechanism. The main experimental factors used in this study were the supply speed of wafers, the nozzle pressure of the compressed air, and the suction time of a vacuum head. A higher supply speed of the wafer under the same nozzle pressure and lower nozzle pressure under the same supply speed resulted in a higher failure rate. Furthermore, the damage rate, according to the wafer supply speed, was unaffected by the suction time to grip a wafer. The optimal experiment conditions within the experimental range of this study are the wafer supply speed of 600 ea/hr, nozzle air pressure of 0.55 MPa, and suction time of 0.9 sec at the vacuum head. In addition, the technology improved by the repeatability performance tests can minimize the damaged wafer rate.

A Study on the Penetration Fracture Strength of Fragile Plates subjected to High Speed Impact (고속 충격을 받는 취성재 평판의 관통파괴 강도)

  • 김지훈;심재기;양인영
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.4
    • /
    • pp.3-9
    • /
    • 1996
  • In this study, comparison of theoretical solutions with experimental results is examined through fracture conditions for the case of float glasses subjected static loading. The range of fracture generation limits and critical penetration energies are solved according to the impactor mass under the high velocity, and analytical method of fracture strength and penetration strength are presented. Also, fracture patterns are investigated according to impact velocities. The results obtained from this study are as follows ; 1) Radial cracks are generated from the loading point regardless of plate thickness in the case of the plate subjected to the static loading. In the case of high-speed impact, dimensions of ring cracks become to smaller and length of radial cracks becomes shorter with the rapidity of impact velocity. 2) Kinetic change volume of collision after/before is constant regardless of velocities over the range of critical penetration velocity. 3) Although the same impact energy is working, the critical penetration energy is increased with the shorter of impactor mass. 4) Although the same impact energy is working, the penetration fracture of lighter Impactor mass is generated more than that of heavier impactor mass, and the impulse of lighter impacter mass appear more than that of heavier impactor mass. Therefore, the penetration fracture in the case of greater impulse is generated earlier regardless of the of the dimensions of Impact loading.

  • PDF

Effects of Feed Rate and Screw Speed of Extruded Diets on Growth and Body Composition of Olive Flounder Paralichthys olivaceus (사료원료 공급량 및 스크류 회전속도를 달리하여 제조한 배합사료가 넙치(Paralichthys olivaceus)의 성장 및 체조성에 미치는 영향)

  • Kim, Kyoung-Duck;Kim, Kang-Woong;Lee, Bong-Joo;Bae, Ki-Min;An, Cheul-Min;Han, Hyun-Sob
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.5
    • /
    • pp.577-581
    • /
    • 2014
  • The aim of this study was to investigate the effect of diet extruder conditions, such as feed-loading rate and screw speed, on growth performance and biochemical responses in olive flounder Paralichthys olivaceus. Over 8 wks, we used four identical diets (triplicated per treatment) with differing ratios of feed-loading rate (kg/h):screw speed (rpm/min) in a laboratory-scaled twin-screw extruder of 50:640, 80:640, 120:640, and 80:400, designated as EP1, EP2, EP3, and EP4, respectively. Screw speed impacted the buoyancy of experimental diets. Diets produced at a screw speed of 640 rpm/min floated for > 24 hrs, whereas those produced at a speed of 400 rpm/min sank between 10 s and 5 min. Fish that were fed EP1 and EP4 diets grew significantly faster than those fed EP2 and EP3 diets. Fish fed EP1 diets ate and gained weight most efficiently among treatments, a result that is likely to be related to feed-loading rate, i.e., ingredients extruded at a low feed-loading rate may have more time to cook in the pre-conditioner of the extruder. A cooked diet may be easier to digest in fish. Fish fed EP4 diets also showed significant weight gain, as compared to those fed EP2 and EP3 diets. However, we found no differences among treatments in proximate compositions of dorsal muscle, liver, and viscera of fish. Our results suggest that extruder conditions, may influence feed quality, impacting feed efficiency and growth of fish.

Deformation Behaviors of Polymeric Materials by Taylor Impact (Taylor 충격시험에 의한 폴리머재료의 변형거동)

  • Park, Sung-Taek;Shin, Hyung-Seop;Park, Jung-Soo;Choi, Joon-Hong;Kim, Jeong-Tae
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.232-237
    • /
    • 2007
  • The deformation of polymers under high loading-rate conditions will be a governing factor to be considered in their impact-resistant applications such as protective shields and transparent armor. In this paper, the deformation and fracture behaviors of polymeric materials such as PE, PC and PEEK have been investigated by Taylor Impact tests. Taylor cylinder impact tests and high speed photography are introduced to examine the deformation behavior under dynamic loading condition. 20 mm air gun was used to perform the impact experiments. Cylindrical projectiles have been impacted onto a hardened steel anvil at a velocity ranging from 100 to $350\;ms^{-1}.$ Along the barrel line, a photo-sensor which measures the speed of the projectile, four digital cameras which has shutter speed of 1/917,000sec and a rigid anvil were set up. After impact experiments, the shapes of projectiles and images taken using high speed cameras were analysed. Depending on materials adopted, they showed a variety in deformation and fracture behaviors.

  • PDF

Geospatial analysis of wind velocity to determine wind loading on transmission tower

  • Hamzah, Nur H.;Usman, Fathoni
    • Wind and Structures
    • /
    • v.28 no.6
    • /
    • pp.381-388
    • /
    • 2019
  • This paper described the application of Geospatial Analysis in determining mean wind speed, $V_h$ for wind load calculation imposed to electrical transmission tower structural design. The basic wind speed data on available station obtained from Malaysian Meteorology Department is adjusted by considering terrain and ground roughness factor. The correlation between basic wind speed, terrain factor and ground roughness stated in EN-50341-1 is used to obtain the $V_h$ for overhead transmission line elements 50 m above ground. Terrain factor, $k_r$ and ground roughness, $z_0$ in this study are presented by land use types of study area. Wind load is then calculated by using equation stated in design code EN-50341-1 by using the adjusted mean wind speed. Scatter plots of $V_h$ for different $k_r$and $z_0$ are presented in this paper to see the effect of these parameters to the value of $V_h$. Geospatial analysis is used to represent the model of $V_h$. This model can be used to determine possible area that will subject to wind load which severe to the stability of transmission tower and transmission line.

Harmonics Measurement and Analysis for Korea High Speed Train Prototype (한국형 고속전철 시제차량 고조파 계측 및 분석)

  • Lee Tae-Hyung;Park Choon-Soo
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1415-1419
    • /
    • 2004
  • It is essential to evaluate harmonic characteristics of high speed train using power electronics equipment such as converter-driven motor drives, battery chargers and auxiliary power supplies. The purpose of this study is to measure and analyze harmonics characteristics of korea high speed train prototype. This paper presents result of harmonics measurement and analysis of harmonics characteristics in terms of loading, speed and operation mode.

  • PDF

Soil and Slab Track Interaction (지반과 슬래브궤도의 상호작용)

  • Kang, Bo-Soon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.338.1-338
    • /
    • 2002
  • In this report, numerical investigations have demonstrated, that the displacement underneath a moving loading reach a maximum value, if the speed of the load is equal to propagation velocity of the maximum wave. The load speed for which the maximum displacement occurs is called critical speed. The critical speed divides the velocities in a subcritical and a super-critical region. By means of calculations the dynamic behaviour of the slab track-soil is investigated. (omitted)

  • PDF

The Study on Elongation and Torque Measurement in Large Bolt by using Ultrasonic Technology (초음파를 이용한 대형볼트 신장량 및 체결력 측정연구)

  • Ahn, Y.S.;Gil, D.S.;Park, S.G.
    • Journal of Power System Engineering
    • /
    • v.13 no.3
    • /
    • pp.40-46
    • /
    • 2009
  • This study on the bolt elongation and torque measuring method by ultrasonic nod-destructive method. In the past, The dial gage was used for the elongation measurement of gas turbine bolts. The purpose of this study is to improve the traditional bolt elongation measurement method. The old method using dial gage measures the elongation of the gas turbine bolt. If the length differences among the loading bolts are within the required range, The loading torques of bolts consider as acceptable. But this method can not give the information about torque differences among the loading bolts. It could bring out vibration of turbine due to loading torque differences among the bolts. So the elongation and torque must be measured simultaneously. The new technology using ultrasonic non-destructive method can give the information about bolt elongation and torque. The ultrasonic method basically measures the speed in the bolt material for the calculation the bolt elongation. But the ultrasonic speed varies according to temperature and loading torque of bolts. So the factors of temperature and loading power were investigated and reflected to the calculation of bolt elongation and torque. The results of this study shows the big difference among the bolts torque in the old method and the torque differences among the bolts can be adjusted by reflecting the result of this study. And this torque adjusting method can decrease gas turbine vibration problem due to torque difference among the bolts. So this paper shows ultrasonic method is better than old method for the measurement of bolt elongation and torque.

  • PDF